

Copyright © 1984 by Commodore Business Machines, (UKI Ltd.

All rights reserved.

This manual is copyrighted and contains proprietary information. No part of this publica

tion may be reproduced, stored in a retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording or otherwise, without the prior

written permission of COMMODORE BUSINESS MACHINES, (UKI Ltd.

ii

TABLE OF CONTENTS

CHAPTER 1

SETTING UP

Unpacking and Connecting the 64
Installation .. .

2
3

Optional Connections 5
Operation 7
Troubleshooting Chart 8
Color Adjustment 10
Expanding Your System With Optional Peripherals 1 2

CHAPTER 2

GETTING STARTED

Commurucatl11g with your 64 The Keyboard
Loading Programs
How to Format a New Disk

Saving Programs

Listing a Directory of Programs on a Disk

CHAPTER 3

BEGINNING BASIC

1 6
. 2 1

. 2 3
. 2 4

. . . 2 4

Printing and Calculating 2 6
Mathematical Functions 2 7
Multiple Calculations on One Line .. 2 9
Execution Order in Calculations . 3 0
Combining PRINT's Capabilities 3 1

CHAPTER 4

WRITING SIMPLE PROGRAMS IN BASIC

Line Numbers . 3 5
The GOTO Statement .. 3 6
Using the LIST Command .. 36
Editing Tips . 37
How to Use Variables 3 8
Using FOR. .. NEXT Loops 41
Using IFfTHEN Statements to Control Programs 42

iii

CHAPTER 5

ADVANCED BASIC

Introduction 46
Simple Animation 47
INPUT 49
Using the GET Statement for Data Input 5 1

. . . 5 2
. 5 3

Using GET to Program Function Keys
R andom Numbers and Other Functions
Guessing Game 55
Your R oll 5 6
R andom Graphics 5 7

CHAPTER 6

COLOR AND GRAPHICS

How to Use Color and Graphics on Your Computer 60
Printing Colors . . 61
Color CHR$ Codes 63
How to Use PEEKS and POKES 65
Screen Graphics

Screen Memory Map

Color Memory Map

More Bouncing Balls

CHAPTER 7

INTRODUCTION TO SPRITES

. 66
.. 67

68
. 69

Bits and By1es 73
Creating a Sprite . 76
Designing a Sprite 77
Tuming Sprites On 81
Sprite Colors 81
Positioning Sprites 82
Expanded Sprites 83
Creating More Than One Sprite 84
Sprite Priorities 85
Turning Sprites Off 85

CHAPTER 8

MA�NG SOUND AND MUS�

The SID Chip 88
Sample Sound Program 96
Playing a Song on Your 64 98
Creating Sound Effects 99
Filtering 1 00
Music Composer 1 01

iv

CHAPTER 9

ADVANCED DATA HANDLING

READ and DATA Statements · .1 04
Calculating Averages . . . 1 06
Subscripted Variables 1 08
Dimensioning Arrays .. 1 09
Simulated Dice Roll with Arrays 1 1 0
Two-dimensional Arrays .1 1 2

APPENDICES

A Expanding Your Commodore. 64 Computer System
B Description of DOS Error Messages

.. 1 1 7
· .1 24

C Commodore 64 BASIC · .1 28
D
E
F
G
H
I
J
K

Abbreviations for BASIC Keywords1 41
Screen Display Codes 1 43
ASCII & CHR$ Codes
Screen and Color Memory Maps

. . . 1 46
.1 49

Deriving Mathematical Functions
Pinouts for INPUT/OUTPUT Devices

· .1 5 1
. .. . 1 5 2

Programs to Try 1 5 4
Converting Standard BASIC Programs to Commodore 64 BASIC 1 5 8

L Error Messages ... 1 5 9
M Music Note Values 1 61
N Bibliography . 1 64
o Sprite Register Map .1 66
P 65 66/65 67 (VIC 1 1) Chip Register Map1 69
Q Commodore 64 Sound Control Settings 1 70
R 6581 Sound Interface Device (SID) Chip Specifications1 73
S Disk and Printer Commands and Statements1 75

v

THE INFORMATION IN THIS MANUAL HAS BEEN REVIEWED AND IS BELIEVED
TO BE ENTIRELY RELIABLE. NO RESPONSIBILITY, HOWEVER, IS ASSUMED
FOR INACCURACIES. THE MATERIAL IN THIS MANUAL IS FOR INFORMATION
PURPOSES ONLY, AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

THIS MANUAL IS COPYRIGHTED AND CONTAINS PROPRIETARY INFORMA
TION. NO PART OF THIS PUBLICATION MAY BE REPRODUCED, STORED IN A
RETRIEVAL SYSTEM, OR TRANSMITTED IN ANY FORM OR BY ANY MEANS,
ELECTRONIC, MECHANICAL, PHOTOCOPYING, RECORDING OR OTHER
WISE, WITHOUT THE PRIOR WRITTEN PERMISSION OF COMMODORE
BUSINESS MACHINES, INC.

Copyright © 1984 by Commodore Business Machines (UK) Ltd.
All rights reserved.

vi

INTRODUCTION

Your new COMMODORE 64 is the best home computer available today. You
can use your COMMODORE 64 for everything from business applications to
household paperwork to exciting games. The 64 offers you lots of memory (64K),
lots of color (16 different colors), lots of sound (music and sound effects), and
lots of fun and practical uses. You can use prepackaged software, or you can
write your own programs in easy-to-Iearn BASIC.

This easy-to-read user's guide contains all the information you need to set up
your equipment properly, understand how to operate your new COMMODORE 64,
and learn how to create your own simple BASIC programs.

This user's guide is intended to introduce you to computers, but it is beyond
the scope of this manual to tell you everything you need to know about computers
or about BASIC. However, this guide does refer you to a variety of publications
that explain the topics we present here in more detail.

For those of you who don't want to learn how to program, you won't have to
search through the whole book to learn how to use Commodore prepackaged
programs and games, or other prepackaged, third party software. We've put all
the information you need to know right up front in Chapters 1 and 2.

Many exciting features are waiting for you inside your COMMODORE 64. Your
new computer gives you the microcomputer industry's most advanced graphics,
which we call SPRITE GRAPHICS. Sprite graphics let you:

• Design your own pictures in different colors, just like the ones you see on
arcade-type video games.

• Animate as many as 8 different picture levels at a time.
• Move your creations anywhere on the screen.
• Double their size.
• Pass images in front or behind each other.
• Use automatic collision detection that tells the computer to do whatever you

want when sprites hit each other.

These features let you design your own games.
The COMMODORE 64 also has built-in music and sound effects that rival

many well known music synthesizers. This part of your computer gives you:

• 3 independent voices, each with a full 9 octave piano-type range.
• 4 different waveforms (sawtooth, triangle, variable pulse, and noise).
• A programmable ADSR (attack, decay, sustain, and release) envelope generator.
• A programmable high, low, and bandpass filter that you can use for each voice.
• Variable resonance and volume controls.

If you want your music to play back with professional sound reproduction, the
COMMODORE 64 lets you connect your audio output to almost any high-quality
amplification system.

vii

As your computing needs grow, so can your system. You can expand your
system by connecting your COMMODORE 64 to other pieces of equipment,
known as peripherals. These accessories include items like these:

• The DATASSETTE' recorder, for tapes.
• The VIC 1541 disk drive (as many as five at a time).

• The COMMODORE dot matrix printers, for hard copies of your programs,
letters, etc.

• The MODEM cartridge, for access through your telephone to the massive
data bases of larger computers, as well as the services of hundreds of
specialists and a variety of information networks.

• The Commodore 1701 color monitor.

If you already have a VIC 1 540 disk drive. your dealer can upgrade it for use with
the COMMODORE 64.

Commodore wants you to really enjoy your new COMMODORE 64. And to
have fun, bear in mind that programming takes time to learn. Be patient with
yourself as you go through the USER'S GUIDE. But. before you start, please
take a few minutes to fill out and mail in the owner/registration card that came
with your computer. This will ensure that your COMMODORE 64 is properly
registered with Commodore Headquarters and that you receive the most up-to
date information regarding future enhancements for your machine.

NOTE: Many programs are under development while this manual is being
produced Please check with your local Commodore dealer and with
Commodore User's Magazines and Clubs. which will keep you up to date on the
wealth of applications programs being written for the COMMODORE 64, worldwide .

. DATASSETIE IS a registered trade mark of Commodore Business Machines, Inc.

viii

CHAPTER 1
S ETTING UP

• Unpacking and Connecting the 64
• Installation
• Optional Connections
• Operation
• Troubleshooting Chart
• Color Adjustment
• Expanding Your System With Optional Peripherals

UN PACKIN G AND CON N ECTIN G THE 64

The following step-by-step instructions show you how to connect the 64 to
your television set, sound system, or monitor and make sure everything is
working properly.

Before attaching anything to the computer, check the contents of the 64
container. Besides this manual, you should find the following items:

1. Commodore 64

2. Power supply (grey box with an AC lead and supply cord)

3. Video cable.

If any items are missing check back with your dealer immediately for a
replacement.

First, take a look at the arrangement of the various connections on the
computer and what each one does.

SIDE PANEL CONNECTIONS

1. Power Socket. The free end of the cable from the power supply is attached
here to supply power to the 64.

2. Power Switch. Turns on power to the 64.

3. Game Ports. Each game connector can accept a joystick or game controller
paddle, while the lightpen can only be plugged into the game port closest to
the front of your computer.

REAR CONNECTIONS

4. Cartridge Slot. The rectangular slot to the left accepts program or game
cartridges.

5. Channel Selector. Use this switch to select which TV channel the
computer's picture will be displayed on.

6. TV Connector. This connector supplies both the picture and sound to your
television set.

2

7. Audio & Video Output. This connector supplied direct audio, which can be
connected to a high quality sound system, and a composite video signal,
which can be fed into a television, or a monitor, such as the Commodore
1701 color monitor.

8. Serial Port. You can attach a COM MODORE printer or a VIC 1541 single
disk drive directly to the Commodore 64 through this connector.

9. Cassette Interface. A DATASETIE '" recorder can be attached to the
computer so you can save information on tape for use at a later time.

10. User Port. Various interface cartridges can be attached to the user port,
such as the MODEM, or RS-232 communication cartridge.

GAME POWER POWER
PORTS SWITCH SOCKET

CARTRIDGE CHANNEL TV AUDIOIVIDEO SERIAL CASSETTE USER
SLOT SELECTOR CONNECTOR CONNECTOR PORT INTERFACE PORT

IN S TALL ATION

CONNECTIONS TO YOUR TV

Connect the computer to your TV as shown on page 4.

1. Attach one end of the TV cable to the phono type TV signal jack on the rear of
the 64. Just push it in. Either end of the cable can be used.

2. Connect the other end of the cable to the antenna switchbox. Just push it in.

3

3. Plug the power supply cable into the power socket on the side of the
Commodore 64. Just push it in. It is "keyed" to allow insertion in only one
direction, so you can't connect the power cord the wrong way. The power
supply converts household current into the form the computer uses.

The 64 is now correctly connected. No additional connections are required to
use the computer with your TV.

4

POWER
SUPPL Y

1701 MONITOR CONNECTIONS

Commodore 64

�;ppm]
(White)

Video Out

Luminance Input (Yellow)

Monitor Cable

OPTIONAL CONNECTIONS

(REAR PANEL)

Audio Input (White)

AI In

.... -................ 0

(Red)

Signal Selector

FRONT OIIDJ REAR
...

Since the 64 furnishes a channel of high fidelity sound, you may wish to play it
through a quality amplifier to realize the best sound possible. In addition, the 64
also provides a standard composite video signal, that can be fed into a television
monitor.

These options are made possible by the audio/video output jack on the rear
panel of the 64. The easiest way to gain access to these signals is by using a
standard 5-Pin DIN audio cable (not supplied). This cable connects directly to
the audiolvideo connector on the computer. Two of the four pins on the opposite
end of the cable contain the audio and video signals. You can also construct your
own cable, using the pinouts shown in Appendix I as a guide.

5

Normally, the BLACK connector of the DIN cable supplies the AUDIO signal.
This plug may be connected to the AUXILIARY input of an amplifier, or the
AUDIO IN connector of a monitor or other video system, such as a video cassette
recorder (VCR).

The WHITE or RED connector usually supplies the direct VIDEO signal. This
plug is connected to the VIDEO IN connector of the monitor or video input section
of some other video system, such as a VCR.

Depending on the manufacturer of your DIN cable. the color coding of the
plugs may be different. Use the pinouts shown in Appendix I to match up the
proper plugs if you don't get an audio or video signal using the suggested
connections.

AUDIO SYSTEM

AUDIONIDEO
OUTPUT
: _ -

TO AUXILIARY
INPUT OR .

TUNER INPUT .-'\.... TO VIDEO IN

* -- '-::" . ;;====�-;�

TV MONITOR

If you purchased peripheral equipment, such as a VIC 1541 disk drive, an MPS
801,802 or 803 printer, a 1520 plotter or a 1701 monitor, you may wish to connect it
at this time. Refer to the user's manuals supplied with any additional equipment
for the proper procedure for connecting it to the computer.

6

A completed system might look like this.

OPERATION

USING THE 64
1. Turn on the computer using the rocker switch on the right-side panel when

you're looking at the computer from the front.

2. After a few moments the following will be displayed on the TV screen:

7

3. If your TV has a manual fine tuning knob, adjust the TV until you get a clear
picture.

4. You may also want to adjust the color and tint controls on the TV for the best
display. You can use the color adjustment procedure described later to get
everything set up properly. When you first get a picture, the screen should
appear mostly dark blue, with a light blue border and letters.

If you don't get the expected results, recheck the cables and connections. The
accompanying chart will help you isolate any problem.

TROUBLESHOOTING CHART

Symptom Cause Remedy

Indicator Light Computer not Make sure power
not "On" "On" switch is in ··On"

position

Power cable Check power socket
not plugged for loose or dis-
in connected power

cable

Power supply Check connection
not plugged with wall outlet
in

Bad fuse in Take system to
computer authorized dealer

for replacement of
fuse

No picture TV on wrong Check other
channel channel for

picture (3 or 4)

Incorrect Computer hooks up to
hookup VHF antenna terminals

Video cable Check TV output
not plugged cable connection
in

Computer set Set computer for
for wrong same channel as TV
channel (30r 4)

8

Symptom Cause Remedy

Random pattern Cartridge not Reinsert
on TV with properly cartridge after
cartridge in inserted turning off power
place

Picture without Poorly tuned Retune TV
color TV

Picture with Bad color Adjust color/
poor color adjustment hue/brig htness

on TV controls on TV

Sound with TV volume up Adjust volume of
excess high TV
background
noise

Picture OK, TV volume too Adjust volume of
but no sound low TV

Aux. output Connect sound
not properly jack to aux. input
connected on amplifier and

select aux. input

TIP: The 64 was designed to be used by everyone.

But we at Commodore recognize that computer users may, occasionally.
run into difficulties. To help answer your questions and give you some fun
programming ideas, Commodore has created several publications to help
you. You might also find that it's a good idea to join a Commodore Users
Club to help you meet some other 64 owners who can help you gain
knowledge and experience.

9

CURSOR

The flashing square under READY is called the cursor. It's a marker that
shows where what you type on the keyboard will be displayed on the screen. As
you type, the cursor moves ahead one space as the original cursor position is
replaced with the character you typed. Try typing on the keyboard and watch
the cursor move while characters you type are displayed on the screen.

COLOR ADJUSTMENT

There is a simple way to get a pattern of colors on the monitor so you can
easily adjust the set. Even though you may not be familiar with the operation of
the computer right now, just follow along, and you'll see how easy it is to use
your computer.

First, look on the left side of the keyboard and locate the key marked
.. . This stands for ConTROL and is used, in conjunction with other

keys, to instruct the computer to do a specific task.
To use a control function, you hold down the ami key while pressing a

second key.
Try this: hold the ami key while also pressing the a key. Then

release both keys. Nothing obvious should have happened, but if you touch any
key now, the screen will show the character displayed in reverse type, rather
than normal type - like the opening message of anything you typed earlier.

Hold down the ''#'.':0;' . What happens? If you did the above procedure cor
rectly, you should see a light blue bar move across the screen and then move
down to the next line as long as the ..,dYi:J49 is pressed.

READY

--

10

Now, hold IiIi1I while pressing any of the other number keys. Each of
them has a color marked on the front. Anything displayed from this pOint will be
in that color. For example, hold IiIi1I arid the II key and release both.
Now hold the ..,:tii!':fu4 .

Watch the display. The bar is now in yellow! In a like manner you can change
the bar to any of the other colors indicated on the number keys by holding

IiIi1I and the appropriate key.
Change the bar to a few more different colors and then adjust the color and

tint controls on your monitor so the display matches the color you selected.
The display should appear something like this:

At this point everything is properly adjusted and working correctly. The
following chapters will introduce you to the BASIC language. However, you can
immediately start using some of the many prewritten applications and games
available without knowing anything about computer programming.

Each of these packages contains detailed information about how to use the
program. It is suggested, though, that you read through the first few chapters of
this manual to become more familiar with the operation of your new system.

1 1

EXPANDING YOUR S YS TEM WITH OPTIONAL PERIPHERALS

Commodore offers a variety of peripheral devices that expand the
capabilities of your computer. These peripherals include:

• storage devices
• printers and plotters
• monitors
• modems for telecommunications
• game attachments
• speech and graphics modules
• desktop controllers

STORAGE DEVICES

Disk Drives

Commodore's disk drives let you store large amounts of information on 51/4"
floppy diskettes. Diskettes offer fast storage and retrieval, and they
automatically keep track of all your files in a directory, or table of contents, that
you can display on your screen or print on a printer.

In addition, you can add extra disk drives by daisy-chaining them to your
computer. Daisy-chaining means connecting one drive to the computer, and
then connecting additional drives to each other.

By acquiring the Commodore 64 IEEE Interface Expansion Card, you can also
attach any IEEE disk drive, such as Commodore's CBM 8050 or 4040 Dual Flop
py Disk Drives, to the 64.

Chapter 2 contains detailed information on using disk drives.

PRINTING AND PLOTTING DEVICES

Printers

You can attach Commodore printers to the 64. These are inexpensive dot
matrix printers. By acquiring the Commodore 64 IEEE Interface Expansion
Card, you can also attach any IEEE printer, such as Commodore's 6400 letter
quality printer, or the high speed 8023 dot matrix printer, to the 64.

Printer/Plotter

Commodore's 1520 Printer/Plotter prints and draws graphics in four colors
(black, blue, red and green). With the 1520, you can draw bar charts, pies, and a
variety of complex graphics.

THE 170111702 MONITOR

Commodore's 14" color monitor offers a superior color picture with high
resolution that enhances your computing experience. This monitor can be con
nected to the 64. The monitor is connected to the computer by an 8-pin DIN
cable. The 1701/1702 Color Monitor User's Guide that comes with the monitor
clearly explains connections. You can also consult Appendix I for information
about the pinouts in the 8-pin connector.

12

ATTA CHMENTS FOR GAMES AND OTHER USES

Commodore offers joysticks and paddles that enhance game-playing on your
computer. These attachments also have other applications. Also available is the
Commodore lightpen which, with appropriate software allows communication
with the computer on the screen.

COMMODORE GRAPHIC AIDS

Commodore provides a variety of graphics programming aids, including
SIMONS' BASIC which adds 114 powerful new commands to BASIC, including
programming help and graphics commands; and LOGO, an easy-to-Iearn
programming language with TURTLE graphics.

13

MUSIC ATIACH MENTS

Commodore will also soon offer a Musical Keyboard and a 3-pad percussion
attachment called the Digi-drumTM. Both products will include special software
packages. These attachments will increase the music making capabilities of
the 64 computers.

CONNECTING TO A STEREO SYSTEM

The sound and music-making capabilities of the COMMODORE 64 can be
enhanced by connecting your computer to a high quality amplifier and stereo
speakers. The 8-pin DIN cable discussed in the 1701/1702 Color Monitor
section can also be used to connect your computer to an amplifier.

DESIGNING A COMPUTER SYSTEM FOR YOUR NEEDS

Commodore offers a variety of peripherals that let you create your own
customized computer system. We offer different types of storage, printing, and
telecommunications devices so you can choose what's best for you. For more
information about Commodore peripherals, read The Commodore Peripherals
Guide and the Commodore magazines discussed in Appendix R and consult
your Commodore dealer.

.

14

CHAPTER 2

GETTING STARTED

• Communicating with your 64: The Keyboard

• Loading Programs

• How to Format a New Disk

• Saving Programs

• Listing a Directory of programs on a Disk

COMMUNICATING WITH YOUR 64: THE KEYBOARD

The computer keyboard lets you communicate with your 64. You use the
keys to tell the computer what you want it to do and to answer the questions
the computer displays on the screen.

The keyboard looks like a regular typewriter, but the computer has special
keys that let the 64 do more than a typewriter. While you read the next few
pages, take a look at these special keys.

RETURN The RETURN key tells the computer to look at

SHIFT

what you typed and put this information in
memory. The RETURN key also moves the cursor
to the next line.

NOTE: Memory is all the information the com
puter currently knows without needing you to tell
it where to look.

The SHIFT key works like the shift key on a
regular typewriter: it lets you print capital letters
or the top characters on double character keys.

mmm
�-\ LjJ-\\ Lj-''\

16

When you are using the graphics on the front of
the keys, the SHIFT key displays the graphic
character on the RIGHT side of the key.

When you are using the four special function
I<eys at the right side of the keyboard, the SHIFT
I<ey gives you the functions on the FRONT of the
I<ey (f2, f4, f6, and f8).

17

KEYS THAT LET YOU MAKE CHANGES

CRSR

INSTIDEL

The cursor is the little colored rectangle that
marks your place on the screen. There are two
CuRSoR keys:

t CRSR � moves the cursor up and down
+-CRSR � moves the cursor left and right

You must use the SHIFT key with the
t CRSR � . key to move the cursor up, and with

the + CRSR � key to move the cursor to the left.
You don't have to keep tapping a CRSR key to

get it to move more than one space. Just hold it
down until the cursor is where you want it.

DEL stands for DELete. When you press the
DEL key, the cursor moves back a space and
erases the character that's there.

PRINT "ERROR"#.
PRINT "ERROR".

When you DELete in the middle of a line, move
the cursor just to the left of the character you
want to DELete.

FIX IT AGAINS, SAM
FIX IT AGAINS. SAM

Then press the DEL key. The characters to the
right automatically move over to close up the
space.

FIX IT AGAIN, SAM

INST stands for INSerT. You have to use the
SHIFT key with the INST/DEL key when you want
to insert characters in a line.

If you've left some characters out of a line, use
the CRSR keys to move the cursor back to the er
ror.

WHILE U WERE OUT
WHILE. WERE OUT

Then, while you hold down the SHIFT key,
press the INST/DEL key until you have enough
space to add the missing characters. INST
doesn't move the cursor; it adds space between
the cursor and the character to its right.

WHILE. U WERE OUT
WHILE YOU WERE OUT

18

CLRlHOME

RESTORE

Use the DEL and INST keys together to fix
wrong characters.

WE'RE NUMBER TWO!
WE'RE NUMBER!
WE'RE NUMBER .
WE'RE NUMBER ONE!

HOME moves the cursor back to the upper left
corner of the screen. This is called the "HOME"
position.

CLR stands for CLeaR. When you use the
SHIFT key with the CLRlHOME key, the screen
CLeaRs and the cursor returns to the home
positon.

The RETORE key returns the computer to its
normal state by RESTOREing the default condi
tions (e.g., the default screen color is blue, the
default for 1/0 chips is OFF, etc.) RESTORE does
such things as clear the screen, returning it to the
original color, and turn off the picture- and sound
making chips.

NOTE: For RESTORE to work, you must hold
down the STOP key while you press the
RESTORE key.

For example, suppose you've just played a
music program that also turned your screen red
and yellow while it LISTed the program. When you
press STOP and RESTORE at the end of the pro
gram, the last note from the program will cease,
your screen will turn blue and the only thing
displayed will be the READY prompt.

19

FUNCTION KEYS

The keys on the right side of the keyboard, f1-f8, are function keys that you
can program to perform a variety of tasks. The explanation of the GET state
ment in Chapter 5 tells you how to program function keys in BASIC.

CTRL

RUN/STOP

� COMMODORE KEY

The ConTRol key lets you set colors and do
other special tasks called control function.s.

To set colors, hold down the CTRl key while
you press the key with the color you want. You
can get eight more colors with the � key.
Chapter 6 also has more about colors.

To get a control function, hold the CTRl key
down while you press the other key. Control func
tions are commonly used in prepackaged soft
ware such as a word processing system.

You can halt a BASIC program while it is still
RUNning by pressing the STOP key. You can also
use the STOP key to halt a printout while it is still
printing.

RUN lets you load a program automatically
from cassette.

When you want to use the RUN key, Y9u must
also use the SHIFT key.

The Commodore key � can do two things:

1. � lets you switch back and forth between
the upper and lower case display mode (the let
ters and characters on the tops of the keys)
and the upper case/graphic display mode (capi
tal letters and the graphics on the fronts of the
keys).

To switch modes, press the � and SHIFT
keys at the same time.

When you first turn on your 64, it is in the up
per case/graphic mode, which means that
everything you type in is in capital letters.
When you are in this mode, you can also print
all the graphics on the fronts of the keys.
• To print the graphic on the right side of a

key, hold down the SHIFT key while you
press the key with the graphic you want to
print. You can only print the right side
graphics when you are in the upper
case/graphic mode.

• To print the graphic on the left side of a key,
hold down the � key while you press the
graphic key. You can print the left side
graphic in either mode.

20

2. The � key also lets you use the second set of
eight alternate colors not shown on the color
keys. To get these other colors, hold down the

� key while you press the number for the
color you want.

� 1 ORANGE

�� 2 BROWN

�::J 3 LT. RED

� 4 GREY 1

� 5 GREY2

� 6 LT. GREEN

� 7 LT. BLUE

� 8 GREY 3

LOADING PROGRAMS

The COMMODORE 64 accepts programs from disk, cartridge, or cassette
tapes. This means you can use prewritten software simply by loading it. But more
important, the 64 lets you save your own programs for reuse. To reuse a program
you wrote and saved on disk or tape, all you do is load and run it.

When you use tapes or disks with your COMMODORE 64 be sure that your
disk drive or cassette unit is correctly connected.

Loading Cartridges

You can use a special line of programs and games on cartridge with your 64.
The programs include a wide variety of business and personal applications. The
games are just like real arcade games, not imitations.

Follow these steps to load games and other cartridges:

1. Turn OFF your COMMODORE 64.

YOU MUST TURN OFF YOUR COMMODORE 64 BEFORE YOU INSERT
OR REMOVE CARTRIDGES. IF YOU DON'T, YOU MAY DAMAGE THE
CARTRIDGE AND THE COMPUTER.

2. Insert the cartridge label uppermost in the slot on the back of your computer.
3. Turn on your 64.
4. Begin the game by typing the START key that's listed in the game's instruc

tion sheet.

21

Loading Prepackaged Cassette Tapes

You can also buy prepackaged software on cassette tape. These cassettes
are just like the ones with recorded music that you can play on a stereo.

1. Insert the cassette into your 1 530 DATASSETTE recorder.
2. Make sure the tape is completely rewound to the beginning of the first side.
3. Type LOAD on your keyboard. The computer answers by displaying PRESS

PLAY ON TAPE.
4. Press PLAY on your DATASSETTE. The screen goes blank until the

computer finds the program. Then the screen displays the message FOUND
(PROGRA� NAME).

5. Press the �� key. This actually loads the program into the computer. If you
want to stop the loading, press the RUN/STOP key.

Loading Your Own Programs From Cassette Tape

The COMMODORE 64 lets you write and save programs on any brand of
cassette tape. All you need is a 1 530 DATASSETTE recorder and the same kind
of blank tape you'd use to record music for a stereo tape player.

Follow these simple steps to load a program you wrote and saved on tape:

1 . Rewind the tape to the beginning.
2. Type LOAD "PROGRAM NAME". If you don't remember the program name,

just type LOAD. This loads the first program on the tape into memory.
3. Press RETURN. The computer responds with

PRESS PLAY ON TAPE

4. Press the PLAY KEY. The screen goes blank while the computer searches for
the program. When the program is found, the screen displays this message:

FOUND PROGRAM NAME

5. Press the [c:l key to actually load the program. The screen again goes blank
during LOADing. When the program is LOADed, the screen returns to normal
and the READY prompt appears. If you want to abort the loading, press the
RUN/STOP KEY.

NOTE: When you load a new program into the computer's memory, any
instructions and unsaved programs in the computer are erased and lost
permanently. Before you LOAD a new program, be sure everything you want to
keep is saved.

After your program is LOADed, you can RUN it, LIST it, or make changes.
Remember that you have to reSAVE a changed program if you want to keep the
new version.

Loading Disks

Disks, which are often called "floppy disks", are really easy to use. The
advantage of disks over tapes is that you can find data stored on disks much
faster. You can also save much more data on a disk than on tape.

The steps are the same for loading preprogrammed disks and disks that you
program yourself.

22

1. Insert a disk into your disk drive. Make sure the label on the disk is facing up.
Put the disk in so that the labelled end goes in last. Look for a little notch on
the disk (it might be covered with a little piece of tape). This notch must be
on the left side as you put in the disk, assuming that you're facing your com
puter. Be sure the disk is all the way in.

2. Close the protective gate on the disk drive after you insert the disk. Just
push down the lever.

3. Type LOAD "PROGRAM NAME", 8. The 8 is the code for disks. You need to
type it here to let the computer know you're loading a disk.

NOTE: You can LOAD the first program by using the· sign in place of the
program name: LOAD ".", 8.

.

4. Press the RETURN key. The disk will spin and your screen will say:

SEARCHING FOR PROGRAM NAME
LOADING

READY
•

5. Type RUN when the screen says READY and the cursor appears. Your soft
ware is ready to use.

HOW TO FORMAT A NEW DISK

When you're using a new, unprogrammed disk for the first time, you need to
format it. Formatting, which is also called headering, prepares your disk by dOing
things like dividing the disk into blocks. Formatting also creates a directory that
you use as a table of contents for the files you save on the disk. DO NOT header a
preprogrammed disk.

You only have to format new disks, not disks that already have programs on
them unless you want to erase the entire disk and reuse it.

To format a new disk, use this special version of the OPEN and NEW com
mands: '

OPEN 1,8,15"NO:<name>, <id>"

NO tells the computer to header (NEW) the disk in drive O. If you have a dual
disk drive connected (via a suitable interface) header disks in drive O.

The name you use in this command goes in the directory as the name of the
entire disk. Give the disk any name up to 16 characters.

The id is any two characters. Give the disk any id you want, but you should give
every disk a different id code.

When the disk drive light goes off, type CLOSE 1 and press RETURN.

BE CAREFUL! Headering a disk erases all information on the disk, if there is
any. Header only a new disk or a disk you are willing to erase. Here are some
examples of formatting commands that header a disk:

OPEN 1,8,15,"NO:MYFILE,A3"
OPEN 1 ,8,15, "NO:$RECORDS,02"

Now that you know how to header a disk, you are ready to use disks to write
and save programs on your COMMODORE 64. Appendix S contains more
information on the OPEN command.

23

SAVING PROGRAMS

When you want to reuse a program you've written, be sure to SAVE it before
you LOAD another program. If you don't, you'll lose the program.

When you change a SAVEd program, you have to SAVE it again if you want to
keep the new version.

When you reSAVE a program, you are replacing the old version with the new
one. If you want to keep both the old and the changed versions, you have to give
the new one a different name when you SAVE it.

Saving on Disk

When you want to SAVE a program you've written on disk, follow these sim·
pie steps:

1. Key in SAVE "PROGRAM NAME",8. The 8 is the code for disks. It tells the
computer that you're using a disk.

2. Press RETURN. The disk makes a nOise, and the computer displays this
message when the program is saved:

SAVING "PROGRAM NAME"
OK
READY
•

Saving on Cassette Tape

When you want to SAVE a program you've written on cassette tape. follow
these steps:

1. Key in SAVE "PROGRAM NAME". The program name you use can be up to
1 6 characters long. .

2. Press the RETURN key. The computer displays the message PRESS
RECORD AND PLAY ON TAPE.

3. Press the record and play keys on your DATASSETIE recorder. The screen
goes blank and turns the color of the border. The READY prompt reappears
when the program is SAVEd.

LISTING A DIRECTORY OF PROGRAMS ON A DISK

When you SAVE programs on a disk, the computer automatically makes a
table of contents, or a DIRECTORY, of the names of the programs on the disk.
You can display this directory to see what programs are on your disk. Follow
these steps:

1. Key in: LOAD "$",8 and press RETURN. The computer displays this
message:

SEARCHING FOR $
LOADING
READY

2. Key in: LIST and press RETURN

Your programs names are displayed on your screen.

24

CHAPTER 3
BEGINNING BASIC

• Printing and Calculating

• Mathematical Functions

• Multiple Calculations On One Line

• Execution Order in Calculations

• Combining PRINT's Capabilities

PRINTING AND CALCULATING

If you don't know BASIC, this section teaches you how to do some simple
things like print words and calculate problems.

The PRINT statement tells the 64 computer to print something on the screen.
PRINT is one of the most useful and powerful commands in the BASIC
language. You can use it to display just about anything, including graphics and
the results of computations. To use the PRINT command, follow these steps:

1. Key in the word PRINT. This tells the computer what kind of job you want it
to do.

2. Key in a quotation mark. This tells the computer where the message you
want to print begins.

3. Key in whatever you want to print on the screen.
4. Key in a closing quotation mark. This tells the computer where the message

you want to print ends.
5. Press the RETURN key. This tells the computer to follow your instructions,

which in this case is to print your message exactly as you typed it.

When you follow these steps, the computer prints your message and
displays the READY prompt. It looks like this:

PRINT "I LOVE MY COMMODORE" You key in this and press RETURN

I LOVE MY COMMODORE The computer prints this
READY
•

The 64 prints whatever you enclose in quotes. Remember to key in both
quotation marks.

If you make a mistake in your PRINT statement, use the INST/DEL key to cor
rect your error. You can change as many characters as you like before you press
the RETURN key.

If you made a mistake that you didn't catch before you pressed the RETURN
key, the computer can't follow your instructions. Instead, it displays an error
message to help you figure out what you did wrong. For example:

?SYNT AX ERROR

If you get this message, check over what you typed in to see where you made
a mistake. The computer is very precise, and it can't follow instructions that
contain spelling errors or other mistakes. To avoid mistakes, be sure you type
things in the correct form.

Remember that the best way to get to know BASIC and your 64 is to try dif
ferent things and see what happens.

26

USING PRINT TO CALCULATE

You can use PRINT to do more than just display what you put in quotation
marks. You can also use it to perform calculations and automatically display
the results. Follow these steps:

1. Key in PRINT
2. Key in the calculation you want to solve. DON'T enclose it in quotation

marks.
3. Press the RETURN key. The computer displays the answer followed by the

READY prompt.

Here's an example:

PRINT 12 + 12
24

READY
•

Type this line and press RETURN

The computer displays
the answer

Be sure you leave off the quotation marks when you want the computer to
solve a problem. If you type the problem inside quotation marks, the computer
assumes you just want to display the problem, not solve it. For example:

PRINT "12 + 12" Key in this line and press RETURN
12 + 12

READY
•

The computer displays

.what's in quotes

So all you have to do to use PRINT as a calculator is omit the quotation
marks. You can use PRINT to add, subtract, multiply and divide. You can also
use exponents and perform advanced mathematical functions such as figuring
square roots.

MATHEMATICAL FUNCTIONS

ADDITION

Use the plus sign (+) to tell the computer to add numbers. Remember to
press RETURN after you type PRINT and the calculation. This tells the com
puter to follow your instructions.

SUBTRACTION

Use the minus sign (-) to subtract. Press the RETURN key at the end of the
calculation. For example:

PRINT 12 - 9
3

MULTIPLICATION

Key in this and RETURN
The computer displays this

Use the asterisk (*) to multiply. You can't use the conventional x because
the computer would think it's the letter x, not the multiplication sign. Press
RETURN at the end of the calculation. For example:

PRINT 12 * 12 Key in this and RETURN
144 The computer displays this

27

DIVISION

Use the slash mark (f) for division. Press the RETURN key after you type the
calculation. For example:

PRINT 144/12
12

EXPONENTIATION

Key in this and RETURN
The computer displays this

Use the up arrow (t) to raise a number to a power. Press the RETURN key
after you type the calculation. For example, to find 12 to the fifth power, type
this:

PRINT 12 t 5
248832

This is the same as:

PRINT 12 * 12 * 12 * 12 * 12
248832

TIP:

Key in this and RETURN
The computer displays this

BASIC has shortcuts that make programming even faster. One shortcut is
abbreviating BASIC keywords. For example, you can use a ? in place of
PRINT. Throughout this book, we'll show you other abbreviations for
BASIC keywords. Appendix 0 lists these abbreviations and shows what is
displayed on the screen when you type the abbreviated form.

28

MULTIPLE CALCULATIONS ON ONE LINE

The last example shows that you can perform more than one calculation on a
line. You can also perform different kinds of calculations on the same line. For
example:

?3 * 5-7+2
10

Key in this and RETURN
The computer displays this

So far our examples have used small numbers and simple problems. But the
64 can do much more complex calculations. The next example adds large
numbers.

Notice that 78956.87 doesn't have a comma between the 8 and the 9. You
can't use commas this way in BASIC. BASIC thinks commas indicate new
numbers, so it would think 78,956.87 is two numbers: 78 and 956.87. Remember
to press RETURN after you type the problem.

? 1234.5 + 3457.8 + 78956.87
83649.17

The next example uses a ten digit number. The 64 can work with numbers
that have up to ten digits, but can only display nine digits in the answer. So the
64 rounds numbers that are more than nine digits. Numbers five and over are
rounded up, and numbers four and under are rounded down. This means that
12123123.45 is rounded to 12123123.5. Because of rounding, the computer
doesn't give the same answer you'd get if you added these numbers by hand. In
this case, the answer is 12131364.817. You can see the difference rounding
makes.

? 12123123.45 + 345.78 + 7895.687
12131364.9

The 64 prints numbers between 0.01 and 999,999,999 using standard nota
tion, except for leaving out commas in large numbers. Numbers outside this
range are printed using scientific notation. Scientific notation lets you express
a very large or very small number as a power of 10. For example:

? 123000000000000000
1.23E + 17

Another way of expressing this number is 1.23 * 10 T 17. The 64 uses scien
tific notation for numbers with lots of digits to make them easier to read.

There is a limit to the numbers the computer can handle, even using scien
tific notation. These limits are:

Largest numbers: + /- 1.70141183E + 38
Smallest numbers: + /- 2.93873588E - 39

29

EXECUTION ORDER IN CALCULATIONS

If you tried to perform some mixed calculations of your own, you might not
have gotten the results you expected. This is because the computer performs
calculations in a certain order.

In this calculation:

20+8/2

the answer is 14 if you add 20 to 8 first, and then divide 28 by 4. But the answer
is 24 if you first divide 8 by 2, and then add 20 and 4.

On the 64, you always get 24 because the computer always performs calcula
tions in the same order. Problems are solved from left to right, but within that
general movement, some types of calculations take precedence over others.
Here is the order of precedence:

First:
Second: t
Third: *
Fourth: + -

minus sign for negative numbers, not for subtraction.
exponentiation, left to right
multiplication and division, left to right
addition and subtraction, left to right

This means that the computer checks the whole calculation for negative
numbers before doing anything else. Then it looks for exponents; then it per
forms all multiplication and division; then it adds and subtracts.

This explains why 20 + 8 1 2 is 24: 8 is divided by 2 before 20 is added
because division has precedence over addition.

There is an easy way to override the order of precedence: enclose any
calculation you want solved first in parentheses. If you add parentheses to the
equation shown above, here's what happens:

? (20 + 8) 12
14

You get 14 because the parentheses allow 20 and 8 to be added before the
division occurs.

Here's another example that shows how you can change the order, and the
answer, with parentheses:

? 30 + 15 * 2 - 3
57

? (30 + 15) * 2 - 3
87

? 30 + 15 * (2 -3)
15

? (30 + 15) * (2 - 3)
-45

The last example has two calculations in parentheses. As usual, they're
evaluated from left to right, and then the rest of the problem is solved. When
you have more than one calculation in parentheses, you can further control the
order by using parentheses within parentheses. The problem in the innermost
parentheses is solved first. For example:

? 30 + (15 * (2 - 3))
15

In this case, 3 is subtracted from 2, then 15 is multiplied by - 1, and -15 is
added to 30. As you experiment with solving calculations, you'll get familiar
with the order in which mixed calculations are solved.

30

COMBINING PRINT'S CAPABILITIES

The 64 computers let you combine the two types of print statements that
you've read about in this book. Remember that anything you enclose in quota
tion marks is displayed exactly as you type it.

The next example shows how you can combine the types of PRINT
statements. The equation enclosed in quotes is displayed without being solved.
The equation not in quotes is solved. The semicolon separates the two parts of
the PRINT statement (semicolon means no space).

? "5 * 9 = " ; 5 *.9 You key in this and RETURN
5 • 9 = 45 The computer displays this

Remember, only the second part of the statement actually solves the calcula
tion. The two parts are separated by a semicolon. You always have to separate
the parts of a mixed PRINT statement with some punctuation for it to work the
way you want it to. If you use a comma instead of a semicolon, there is more
space between the two parts when they're displayed. A semicolon leaves out
space.

The 64's screen is organized into 4 zones of 10 columns each. When you use a
comma to separate parts of a PRINT statement, the comma works as a tab,
sending each result into the next zone. For example:

?"total:";95,"shortage:";15
total:95 shortage:15

If you have more than four results, they are automatically displayed on the
next line. For example:

? 2 * 3,4 - 6,2 i 3,6/4,100 + (-48)
6 - 2 8 1.5
52

Here's the difference when you use semicolons:

? 2 * 3;4- 6;2 t 3;6/4;100 + (-48)
6 -2 8 1.5 52

You can use the difference between the comma and the semicolon in format
ting PRINT statements to create complex displays.

31

CHAPTER 4

WRITING SIMPLE PROGRAMS IN BASIC

• Line Numbers

• The GOTO Statement

• Using the LIST Command

• Editing Tips

• How to Use Variables

• Using FOR ... NEXT Loops

• Using IF/T HEN Statements to Control Variables

So far this book has shown you how to do simple things with your 64. You've
experimented with typing single lines of instructions into your computer and
getting instant results by pressing the RETURN key. This easy way of doing
things on your computer is called the IMMEDIATE or CALCULATOR mode.

But you'll probably want to use your computer to do more complex jobs that
use more than one statement. When you combine a number of statements into
a PROGRAM, you can use the full power of your 64.

To see how easy it is to write your first program on the 64, follow these steps:

1. Clear the screen by holding down the SHI FT key while you press the
CLR/ HOME key.

2. Key in NEW and press RETURN. This clears out information that might still
be in the computer's memory after your experimenting.

3. Key in the following two lines exactly as they appear here:

10 ? "COMMODORE 64"
20 GOTO 10

4. Remember to press the RETURN key after each line. After you key in the first
line and press RETURN, you'll notice that the computer doesn't respond to
the PRINT command right away like it did before when you typed in the same
kind of commands. This is because you are now beginning the command
with a line number (10). When you use line numbers, the computer knows
that you're writing a program, so it waits for you to finish keying in the whole
program before following any of your instructions.

5. Key in RUN and press RETURN. The RUN command tells the computer that
you've finished keying in program statements, and you're ready to have your
instructions followed. Here's what happens when you RUN this program:

COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64

34

6. Stop the program's execution by pressing the RUN/STOP key. The computer
continues to follow your orders by printing COMMODORE 64 over and over
until you interrupt with the RUN/STOP key. Here's how your screen looks
when you press STOP.

COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
COMMODORE 64
BREAK IN 10
READY

This simple program introduces several important concepts that are the
basis for all programming.

LINE NUMBERS

We mentioned before in step 4 that line numbers tell the computer that
you're writing a program. They also tell the computer in what order you want the
statements in your program to execute. Without line numbers to tell the computer
when to follow which instruction, the computer doesn't know what to do first.

The longer and more complex your program is, the more important it is to
remember that the computer relies on you to tell it W HEN to do things, as well
as W H AT to do. One good thing about this is that you can key in line 20 before
line 10 because the computer just checks the line numbers to find out the order
for executing the program. The computer doesn't check for the order your lines
appear on the screen.

Another advantage of line numbers is that you can use the number to refer to
the statement on the line. When you want to go back and repeat the execution
of a statement, all you do is refer to it by line number in a GOTO statement, as
you did in the example above.

35

THE GOTO STATEMENT

When you told the computer to RUN the sample program above, COMMODORE
64 was PRINTed repeatedly instead of just once because of the GOTO state
ment in line 20.

The GOTO statement tells the computer to go directly to a specified line.
Then the computer follows the instructions in the specified line and goes on to
the next line.

You can use a GOTO statement to tell the computer to go back to a line
that's already been executed. Or GOTO can tell the computer to skip forward,
even if this means that some lines in the program don't get executed.

In our example, the program PRINTS the message in line 10 and moves to
line 20. There, the GOTO statement tells the computer to go back to line 10 and
do what line 10 says to do. So, the program prints the message in line 10 again,
and then moves to line 20, which sends the computer back to line 10 and so on.

This repetition is called a LOOP. Because the example doesn't give the com
puter a way out of the loop, the circle repeats endlessly. You have to halt the cy
cle by interrupting the program with the RUN/STOP key.

It's best to include a statement in your program that ends the loop so you
don't have to use the RUN/STOP key. We'll explain more above ending loops
later in this chapter.

USING THE LIST COMMAND

Now that you've interrupted execution of the sample program, type in LIST
and press RETURN. Your program is now displayed intact because it's still in the
computer's memory, even though you interrupted the program's execution. The
only difference is that the computer changed your? into the word PRINT. This
doesn't affect your program, it's just the way the computer does things. When
you use the LIST command, the computer also displays the lines of the program
in correct numerical order, even if you entered the lines out of order.

One of the important differences between writing programs and entering
single lines in the immediate/calculator mode is that you permanently lose an
immediate statement once you execute it and clear the screen. But, until you
start a new program, you can always get a program back just by keying in LIST.

From here, you can change the program, SAVE it, or RUN it again.

36

EDITING TIPS

When you make a mistake in a line you've keyed in, or when you just want to
change a line, the 64 offers you a number of editing options.

1. You can retype a line any time, and the computer automatical ly substitutes
the new line for the o ld one. A l l you have to do to replace a line is use the
same line number. For example:

10 ? "My name is Sarah"
20 ? "I was born in California"
20 ? "I live in Pennsylvania"
RUN
My name is Sarah
I live in Pennsylvania

As you can see, the first line 20 never executes because it is replaced by
the second line 20. If you now key in a LIST command, you' l l see that only
the second line 20 is sti l l part of the program.

2. You can easily erase a line you don't want just by keying in the line number
and pressing the RETURN key. If you now key in LIST, you' l l see that the line
is gone, and so is the line number.

3. You can easily edit an existing line. Use the CuRSoR keys to move the cur
sor back to the line you want to change, and then just edit the line any way
you want to. As soon as you press the RETURN key, the edited line wi l l
rep lace the old line. Remember to use the INST/DEL key to insert or delete.

When you finish editing, you can check your program again to verify changes
by keying in the LIST command. Remember that LIST a lso puts lines in
numerical order if you've keyed them in out of order.

Try editing our sample program by adding a semicolon to the end of the line,
and omitting the 64. After you finish the changes, be sure to move the cursor past
line 20 before you RUN the program. Here's how the program works now:

LIS T
1 0 PRINT "COMMODORE ";
20 GOTO 10

COMMODORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
BREAK IN 10
READY

37

HOW TO USE VARIABLES

A variable is a symbol that stands for a value. Sometimes the value of a
variable is unknown before you RUN a program. One of the purposes of a pro
gram may be to find one or more values for a variable. Look at this line from a
program:

20 LET X = 28 + V

The = sign means " become" or "take the value of". The LET instruction is
optional and may be omitted.

In this equation, X and V are variables. Suppose X stands for the number of
days in a month. One of the best things about a variable is that you can reuse it
in a program, so X can stand for the days in a l l the months, not just one month.
This is where V comes in. A l l months have 28 days, so V stands for the days
over 28. Later in this chapter there's a program that gives values to these two
variables.

The most important thing now is understanding how variables work, because
variables a l low you to do complex tasks with you computer. Variables also let
you write programs that are very reusable.

Imagine that your computer contains a bunch of little slots, like a bank of
mail boxes. When you write a program, you can use some of these slots to hold
values. All you do is give a name to the slots you need, and during the program
you can put values into each slot by using the slot's name. For example, in the
equation above, we used two slots by naming one X and one V. At the beginning
of a program, these s lots have names, but they're empty. Here's what happens
when you put a value in V's s lot:

X

I � I
Now the variable V has the value 3. You can give V this value just by writing this
simple statement:

10V = 3

Since X equals 28 plus V, when you RUN the program X's s lot gets a value, too.

X
31

Here's how the program looks:

10 V = 3
20X = 28 + V

30 ? "T HE NUMBER OF DAVS IN MAV IS ";X
RUN
THE NUMBER OF DAVS IN MAV IS 31

Here's another program that uses variables:

10 X% = 15
20 X = 23.5
30 X$ = "TOTAL:"
40 V = X% + X
50 ? X$;V

3 8

When you RUN the program, the imaginary s lots look like this after line 30 is ex
ecuted:

On completion of the program, Y has the value: 3 8.5

The a bove example uses the three types of variables:

EXAMPLE

TYPE SYMBOL DESCRIPTION EXAMPLES VALUES

Integer 0/0 whole numbers X%, A1% 15,102,3
Text string $ characters in X$, AB$ "TOTAL:",

quotes "DAY 1"
Floating real (decimal) X, AB 23.5, 12,
point or whole numbers 1.3E + 2

Be sure you use the right variab le types in your programs. If you try to do
something like assign a text string to an integer variab le, your program won't
work.

There are a few other things to keep in mind when you assign names to
variables:

• A variab le name can have one or two characters, not counting the special
symbol used with integer and text string variables.

• You can use more than two a lphabetic characters in a variable name, but the
computer only recognizes the first two. So the computer would think PA,
PARTNO and PAGENO are the same variable referring to the same "slot".

• A program is easier for people to read when you use longer variable names,
but when you use more than two characters in a name, be sure the first two
are unique.

• You can use X, X%, and X$ in one program because the specia l symbols %
and $ make each variable name unique. The same is true of A2, A2%, and
A2$.

• The first character must be alphabetic (A to Z). The second and any later
characters can be either alphabetic or numeric (0 to 9). Remember that the
computer ignores every character after the second unless it's a % or $ in the
third position.

• Variable names can't contain BASIC keywords, which are a lso ca l led reserv·
ed words. These are the words like PRINT and RUN that are part of the
BASIC language. Appendix D lists a l l the BASIC reserved words.

39

Here's one more sample program that shows you how to use variables. This
example also uses some of the other things you've learned so far.

NEW
10 X = 1.05
2OY=300
30Z=X* Y
40 PRINT "SEATS AVAILABLE:";Y
50 PRINT "TICKETS AVAILABLE:";Z
6OY=Y+1
70 PRINT "OVERBOOKING POINT:";Y
RUN
SEATS AVAILABLE: 300
TICKETS AVAILABLE: 315
OVERBOOKING POINT: 301

Lines (10 - 30) assign variable names.
Lines 40 and 50 PRINT a message and the current value of variables Y and Z.

Notice that at line 40, the value for Y is 300.
Line 60 gives Y a new value, and this new value is PRINTed in line 70. Line 60

shows that a variable can have more than one value in a program.
Line 60 a lso shows another of the powerful features of variables: you can

make a variable equal to itself and another value. This isn't allowed in regular
a lgebra, but this kind of statement is commonly used in programming. It
means: take the current value of a variable, combine it with another value, and
replace the first value of the variable with this new value. You can also use
statements like these:

Y = Y - 1
Y=Y+X
Y = Y 12
Y = Y * (X + 2)

40

USING FOR/NEXT LOOPS

We mentioned loops earlier in this chapter during the explanation of the
GOTO statement. As you'll recall, loops are repeated executions of one or more
lines in a program.

The FOR/NEXT statement lets you create very useful loops that control the
number of times a segment of a program is executed. The FOR statement sets
a limit on the number of times the loop will execute by assigning a range of
values to a variable. For example:

FOR COUNT = 1 TO 4

The NEXT statement marks the end of a FOR/NEXT loop. When the program
reaches a NEXT statement, the computer checks the FOR statement to see if
the limit of the loop has been reached. If the limit hasn't been reached, the loop
continues and the variable in the FOR statement is incremented by one. For ex
ample, if you add a FOR/NEXT loop to the program at the beginning of this
chapter, here's what happens:

10 FOR CT = 1 TO 4
20 ? "COMMODORE 6 4 "

30 NEXTCT
RUN

COMMODORE 64
COMMODORE 6 4
COMMODORE 6 4
COMMODORE 64

Now that you've added the FOR/NEXT loop, you don't have to break in with
the STOP key to halt the program's execution.

This FOR/NEXT loop works like this:

Line 10 gives the variable CT a range of values from 1 to 4, and tells the com
puter to execute the next lines until CT equals 4.

Line 20 tells the computer to print COMMODORE 6 4.
Line 30 te lls the computer to add 1 to the current value of CT. As long as the

value of CT remains within the range of 1 to 4, the program repeats, and
COMMODORE 64 is PRINTed again. When CT equals 4, line 20 executes one
more time. When line 30 again adds 1 to CT, the computer knows that CT is now
out of range. So the computer stops executing the loop, and the program ends by
itself.

To make sure you understand how the FOR/NEXT loop works, we'll add more
PRINT statements to line 20 that let you keep track of the value of CT.

41

20 PRINT " COMMODORE 64 "; "COUNT ="; CT
30 NEXT CT
RUN
COMMODORE 64 COUNT=1
COMMODORE 64 COUNT=2
COMMODORE 64 COUNT = 3
COMMODORE 64 COUNT = 4

As you can see, the program ends automatically when CT is out of the range
set up in the FOR statement.

You can increment the value of the variable in a FOR/NEXT statement by
values other than 1 . All you do is add both the word STEP and the value you want
to use to the end of the FOR statement. For example:

NEW

10 FOR NB = 1 TO 10 STEP .5
20 PRINT NB,
30 NEXT NB

RUN
1
3

·5
7
9

NEW

1.5
3.5
5.5
7.5
9.5

10 FOR A = 2 TO 8 STEP 2
20 PRINT A,
30 NEXT A

RUN
2 4

This comma tells the computer to print each
value beginning at the first position of the
next 10 space zone.

2
4
6
8
10

6

2.5
4.5
6.5
8.5

8

You can also use a FOR/NEXT loop to count backwards. When you do this,
make sure your STEP is negative. For example, if you change line 10 to this:

10 FOR A = 8 TO 2 STEP - 2

Here's how the output looks:

RUN
8 6 4 2

42

USING IF/THEN STATEMENTS TO CONTROL PROGRAMS

An I FITHEN statement is another way to control program execution. This
statement tells the computer to check IF a condition is true. IF that condition is
true, the instructions after the word T HEN execute. IF that condition is false, the
program goes on to the next line without following the instructions in the T HEN
statement. For example:

10 X = 60
20 X = X + 1
30 I F X = 64 T HEN PRINT "GOT IT": END
40 GOT020

You can use an IF statement to start a loop or to decide whether certain parts of
program will execute. For example:

10 A = 0
20 I F A < = 8 T HEN 40
30 END
40 ? " FRODO LIVE S ",A
50 A = A + 2
60 GOT020
RUN
FRODO LIVES 0
FRODO LIVES 2
FRODO LIVES 4
FRODO LIVES 6
FRODO LIVE S 8

In this example, the I F/THEN statement in line 20 tells the computer to check
the current value of A. IF A is equal to or less than 8, T HEN the program skips line
30 and continues RUNning at line 40. IF A is more than 8, in other words, IF the
condition in line 20 is false, the computer ignores the instructions after the T HEN
statement.

IF line 20 is false, T HEN line 30 is executed.
Line 40 PRINTs the message and the current value of A.
Line 50 adds 2 to the value of A each time the loop RUNs. As soon as A

becomes 1 O,line 20 becomes false, line 30 becomes true, and the program ends
immediately.

You can use any of these relational operators in IF/T HEN statements:

SYMBOL

<
>

<>
>=

< =

MEANING

Less than
Greater than
Equal to
Not equal to
Greater than or equal to
Less than or equal to

43

CHAPTER 5
ADVANCED BASIC

• Introduction

• Simple Animation

• INPUT

• Using the GET Statement for Data Input

• Using GET to Program Function Keys

• Random Numbers and Other Functions

• Guessing Game

• Your Roll

• Random Graphics

INTRODUCTION

The next few chapters are for people who are familiar with BASIC program
ming language and the concepts necessary to write advanced programs.

Those of you who are just starting to learn how to program may find some of
the information too technical to understand completely. But you'll find some
simple examples that are written for new users in two chapters, SPRITE
GRAPHICS and CREATING SOUND. These examples will give you a good idea
of how to use the sophisticated graphics and sound capabilities available on
your 64.

If you want to learn more about writing programs in BASIC, check the
bibliography in the back of this manual (Appendix N).

If you are already familiar with BASIC programming, the following chapters
will help you get started with advanced BASIC programming techniques. You'll
find extensive information about advanced programming in the COMMODORE
64 PROGRAMMER'S REFERENCE GUIDE, which is available through your
local Commodore dealer.

46

SIMPLE ANIMATION

You can use some of the 64's graphic capabilities by putting together what
you've learned so far in this manual, along with a few new concepts.

Try entering the following program to see what you can do with graphics.
Notice that you can include cursor controls and screen commands WITHIN a
PRINT statement. When you see something like (CRSR left) in a program
listing, hold down the SHIFT key and press the <E- CRSR � key. The screen
shows the graphic representation of a cursor left, which is two vertical reversed
bars. The graphic representation of the SHIFTed CLR/HOME key is a reversed

:;�. : INDICATE�NEW
10 REM BOUNCING BAl.l. COMMAND
20 PRINT "(CLR/HOME "
25 FOR X = 1 TO 10: PRINT "(CRSRIDOWN)";:NEXT "- �'-
30 FOR BL = 1 TO 40
40 PRINT" .(CRSR LEFT)";:REM ". is a SHIFT -Q"

50 FOR TM = 1 TO 5
60 NEXT TM
70 NEXT Bl.
75 REM MOVE BALL RIGHT TO l.EFT
80 FOR BL = 40 TO 1 STEP - 1

90 PRINT " (CRSR LEFT) (CRSR LEFT).(CRSR LEFT)";
1 00 FOR TM = 1 TO 5
110 NEXT TM
120 NEXT BL
130 GOT020

'TIP:
All words in this text will be completed on one line. However, as long as you

don't hit -Uii@1 your 64 will automatically move to the next line even if'
middle of a word.

When this program RUNs, it displays a bouncing ball moving across the
screen from left to right and back again. Take a close look at the program to see
how this is done.

47

NEW
10 REM BOUNCING BALL

,----...... 20 PRINT "(CLR/HOME)"
25 FOR X = 1 TO 10: PRINT "(CRSRIDOWN)";:NEXT �30 FORBL= 1 TO 40
40 PRINT" .(CRSR LEFT)";:REM ... is a SHIFT -0"

,.......... 50 FOR TM = 1 T05
L-60 NEXT TM

70 NEXT BL
75 REM MOVE BALL RIGHT TO LEFT �80 FORBL=40 T01 STEP-1
90 PRINT" (CRSR LEFT) (CRSR LEFT).(CRSR LEFT)";

.----+100 FOR TM = 1 TO 5
L-110 NEXT TM

120 NEXT BL
1------130 GOTO 20

Line 10 is a REMark that tells you what the program does. A REMark state
ment has no effect on the program itself.

Line 20 clears the screen.
Line 25 PRINTs ten cursor-down commands. This just positions the ball in

the middle of the screen. Without this line, the ball would move across the top line
of the screen.

Line 30 sets up a loop to move the ball 40 columns from left to right.
Line 40 does three things:

1. PRINTs a space to erase the previous ball positions.
2. PRINTs the ball.
3. Performs a cursor-left to get ready to erase the current ball position again.

Line 50 and 60 set up a loop that slows down the ball's movement. Without
this loop, the ball would move too fast for you to see clearly.

'-- Line 70 completes the loop set up in line 30 to PRINT balls on the screen.
Each time the loop executes, the ball moves another space to the right. As you
can see from the illustration, the program contains a loop within a loop. You
can include up to ten loops within a loop. The only time you get in trouble is
when the loops cross over each other. The loops have to be NESTED inside
each other. In other words, if you start loop A and then start loop B inside loop A,
you must finish loop B (the inside loop) first. A maximum of nine loops may be
nested in this way.

When you're writing a program with loops, it's a good idea to draw arrows
from the beginning to the end of the loops. If your loops cross, the computer
can·t figure out what you want, so it can't execute your program.

Lines 80 through 120 just reverse the steps in the first part of the program,
and move the ball from right to left. Line 90 is slightly different from line 40
because the ball is moving in the opposite direction, and you have to erase the
ball to the right and move to. the left.

Line 130 sends the program back to line 20 to start the whole process over
again.

For a variation on the program, change line 40 to read:
40 PRINT ·'(SHIFT) (0)"

Run the program and see what happens now. Because you left out the cursor
control, each ball remains on the screen until it is erased by the ball moving right
to left in the second part of the program.

48

INPUT

Up to now, everything in a program has been set up before the program
RUNs. Once you executed the program, you couldn't change or add anything.
The INPUT statement lets you send information to a program WHILE it is RUN
ning. Not only does the program act on this information you supply, but the pro
gram won't continue until you supply it.

To get an idea of how INPUT works, type NEW, press RETURN, and enter this
short program.

1 0 INPUT A$
20 PRINT "YOU TYPED ";A$
30 PRINT
40 IF A$ = "STOP" THEN END
50 GOTO 1 0
RUN
? GO ----------------------�_i
YOU TYPED GO

? CONTINUE
YOU TYPED CONTINUE

? STOP --------------"
YOU TYPED STOP

Here's what happens in this program:

Line 10 tells the computer to display a question mark to prompt you to INPUT
a value for A$, and to wait until you supply the value before continuing the pro
gram execution.

Line 20 PRINTs a message and the INPUT value, and line 30 PRINTs a blank
line.

Line 40 tells the computer to end the program immediately IF the value you
INPUT for A$ is STOP.

Line 50 returns the program to line 10 so you can INPUT another value. IF line
40 is true because the last value you INPUT for A$ was STOP, then line 50 isn't
executed.

You can INPUT numeric or string variables, and you can have the INPUT
statement print a message along with a question mark to describe the kind of
INPUT the computer is waiting for. For example, here's what happens when you
add a prompt message to line 10 of the previous example:

10 INPUT "KEEP GOING";A$
RUN
KEEP GOING? GO
YOU TYPED GO

KEEP GOING? STOP
YOU TYPED STOP

49

Prompt message can't
be more than 38
characters

Here's a more complex example that demonstrates a lot of what's been
presented so far, including the INPUT statement.

NEW
1 REM TEMPERATURE CONVERSION PROGRAM
5 PRINT "(SHIFT/CLR/HOME)"
10 PRINT "CONVERT FROM FAHRENHEIT OR CELSIUS (F/C)":INPUT A$
20 IF A$:::: "" THEN 10
30 IF A$:::: "F" THEN 100
40 IF A$ < > "C" THEN END
50 INPUT "ENTER DEGREES CELSUIS: ";C
60 F:::: (C*9)15 + 32
70 PRINT C;" DEG. CELSIUS:::: "; F;" DEG. FAHRENHEIT"
80 PRINT
90 GOTO 10
100 INPUT "ENTER DEGREES FAHRENHEIT: ";F
110 C :::: (F' - 32)*5/9
120 PRINT F;" DEG.FAHRENHEIT :::: ";C;" DEG. CELSIUS"
130 PRINT
140 GOTO 10

Line 10 uses the INPUT statement to print a prompt message and to wait for
you to type in a value for A$.

Lines 20, 30 and 40 check what you typed in and tell the computer where to
go next. Line 20 tells the computer to go back to line 10 and ask for INPUT again
IF nothing was typed in (IF just RETURN was pressed). Line 30 tells the com
puter to go straight to line 100 and perform the Fahrenheit-to-Celsius conver
sion IF the value you typed for A$ is F.

Line 40 checks to be sure that you haven't typed in anything beside F or C. IF
you have, line 40 ends the program. IF you typed in a C, the computer
automatically moves to line 50 to perform the Celsius-to-Fahrenheit conversion.

It may seem like too much detail to include all these IF statements to check
what you INPUT. But this is a good programming practice that can spare you a
lot of frustration. You should always try to be sure that your program takes care
of all possibilities.

Back to the example: once the program knows what type of conversion to
make, the calculations are made. Then the program PRINTs the temperature
you entered and the converted temperature.

The calculation this program performs is just straight math, using the stan
dard formula for temperature conversion. After the calculation finishes and the
answer is PRINTed, the program loops back and starts over.

Here's a sample execution of this program:

CONVERT FROM FAHRENHEIT OR CELSIUS (F/C): ?F
ENTER DEGREES FAHRENHEIT: 32
32 DEG. FAHRENHEIT:::: 0 DEG. CELSIUS

CONVERT FROM FAHRENHEIT OR CELSIUS (F/C): ?

After you RUN this program, you might want to save it on disk. This program,
as well as others in this manual, can form part of your program library.

50

USING THE GET STATEMENT FOR DATA INPUT

GET lets you input one character at a time from the keyboard without press
ing the RETURN key. This really speeds up entering data in many cases.

When you RUN a program that has a GET statement, whatever key you press
is assigned to the variable you include in the GET statement. Here's an exam
ple:

1 PRINT "(SHIFT/CLR/HOME)"
10 GET A$: IF A$ = " " THEN 10
20 PRINT A$;
30 GOTO 10

Line 1 clears the screen.

No space between
quotes

Line 10 lets you type in any key on the keyboard. In effect, the loop in line 10
tells the computer to wait until you type in a key before moving to line 20.

Line 20 displays the keys you type on the screen.
Line 30 sends the program back to GET another character. It's important to

remember that the character you type in won't be displayed unless you PRINT it
to the screen, as we've done in line 20.

The IF statement in line 10 is very important. GET continually works, even if
you don't press a key (unlike INPUT, which waits for your response), so the se
cond part of line 10 continually checks the keyboard until you hit a key.

Try leaving out the second part of line 10 and see what happens.
To stop this program, press the RUN/STOP and RESTORE keys.
You can easily rewrite the beginning of the temperature conversion program

to use GET instead of INPUT. If you've SAVEd this program, LOAD it and
change lines 10 and 20 like this:

10 PRINT "CONVERT FROM FAHRENHEIT OR CELSIUS (F/C)"
20 GET A$: IF A$ = "" THEN 20

This change makes the program operate more smoothly because nothing
happens unless you type in one of the two responses (F or C) that selects the
type of conversion. If you want to keep the program, be sure to SAVE it again.

51

USING GET TO PROGRAM FUNCTION KEYS

As you'll recall from an earlier chapter, we told you that the keys on the right
side of the keyboard (f1 through f8) are function keys that you can program to
perform a variety of tasks.

Here's how to program a function key:

1 . Use a GET Statement to read the keyboard.
2. Use IF statements to compare the key you press to the CHR$ code for the

function key you want to use. Every character on the keyboard has a unique
CHR$ number. For example, the CHR$ code of f1 is 133. Appendix F lists the
CHR$ code for all keys.

3. Use THEN statements to tell the computer what you want the function key
to do.

When you RUN the program, all you do is press a function key you program
med, and the key will follow the instructions you gave it in the THEN statement.
For example:

1 0 GET A$: IF A$ = '''' THEN 10
20 IF A$ = CH R$(1 37) TH EN PRI NT CH R$(1 4)
30 IF A$ = CHR$(1 34) THEN PRINT "YOURS TRULY"

Line 1 0 tells the program to assign the key you press to the variable A$. As
you'll recall from the previous example, the loop in line 10 continually checks
the keyboard for input.

Line 20 programs function key 2, CHR$(1 37). Line 20 tells the computer to
make A$ equal to CHR$(1 4) if you press function key 2. CHR$(1 4) is the switch
from upper to lower case letters on the keyboard. When you RUN this program,
you'll see that the characters on the screen immediately make this switch if you
press f2.

Line 30 programs function key 3, CHR$(1 34). Line 30 tells the computer to
make A$ equal to the character string YOURS TRULY and CHR$(13) if you press
f3 during program execution. CHR$(13) is the code for the RETURN key.

THE CHR$ codes for the function keys are:

f1 = CHR$(1 33) f2 = CHR$(1 37)
f3 = CHR$(134) f4 = CHR$(1 38)
f5 = CHR$(135) f6 = CHR$(1 39)
f7 = CHR$(136) f8 = CHR$(140)

The COMMODORE 64 PROGRAMMER'S REFERENCE GUIDE has more in
formation about programming function keys. You can purchase this extensive
guide from your local Commodore dealer.

52

RANDOM NUMBERS AND OTHER FUNCTIONS

The 64 also has built-in functions that you can use to perform special tasks.
Functions are like built-in programs included in BASIC. The great advantage of
these built-in functions is that you don't have to type in a number of statements
every time you want to perform a specialized calculation. Instead, all you do is
type the command for the function you want and the computer does all the rest.

These built-in functions include figuring square roots (SOR), finding out the
contents of a memory location (PEEK), generating random numbers (RND), etc.
Appendix C lists all the functions available on your computer.

One function you can have a lot of fun with is the random number function,
RND. If you want to design a game or an educational program, you'll often need
to be able to program your computer to make up random numbers. For exam
ple, you'd need to do this to simulate the tossing of dice. Of course you could
write a program that would generate these random numbers, but it's much
easier to be able to do this just by calling upon the prewritten RaNDom number
function.

To see how RND works, try this short program:

NEW
10 FOR X = 1 TO 10 IF YOU LEAVE OUT THE COMMA, YOUR
20 PRINT RND (1), LIST OF NUMBERS APPEARS AS 1 COLUMN

30 NEXT

When you RUN this program, the screen displays:

.789280697 .664673958

.256373663 .0123442287

.682952381 3.90587279E - 04

.402342724 .879300926

.158209063 .245596701

Your numbers don't match? It would be incredible if they did because the
program generates a completely random list of ten numbers.

If you RUN the program a few more times, you'll see that the results are
always different. Though the numbers don't have a pattern, you'll notice a few
consistencies about the list the program displays.

For one thing, the results are always between 1 and 0, but never equal to 1 or
O. For another, the numbers are real numbers (with decimal points).

Now, we started out to simulate dice tosses, and the results from this pro
gram aren't exactly what we're looking for. Now we'll add a few more features
to this program to get what we want.

First, add this line to the program to replace line 20, and RUN the program
again:

20 PRINT 6*RND(1),
RUN

3.60563664
5.48602315
3.10045018
3.91302584
2.32056144

4.52687513
1.09650123
4.39052168
5.06321506
4.10781302

53

Now we've got results larger than 1, but still have real numbers. To solve this,
we'll use another function.

The INT function converts real numbers to integer (whole) numbers. So try
replacing line 20 again:

20 PRINT INT(6*RND(1)),
RUN

2 3 1 0
2 4 5 5
o 1

Now we're even closer to our goal, but you'll notice that the numbers range
from 0 to 5, not 1 to 6. So as a final step, we'll replace line 20 again:

20 PRINT INT(6*RND(1)) +1

Now when you RUN the program, you'll get the results you want.
When you want to generate a range of real numbers instead of whole

numbers, the formula is slightly different because you must subtract the lower
limit of the range from the upper limit. For example, you can generate random
numbers between 1 and 25 by typing:

20 PRINT RND(1)*(25-1) + 1

The general formula for generating random n�mbers in a certain range is:

NUMBER = RND(1) * (UPPER LIMIT - LOWER L1MIT)+LOWER LIMIT

54

GUESSING GAME

Here's a game that uses random numbers. This game not only uses the RND
function, but it also introduces some additional programming theory.

When you RUN this program, the computer generates a random number, NM,
whose value you'll try to guess in as few turns as possible.

NEW
1 REM NUMBER GUESSING GAME
2 PRINT "(CLRlHOME)" ____ �----..
5 INPUT "ENTER UPPER LIMIT FOR GUESS ";LI
10 NM = INT(L,*RND(1))+ 1
15 CN = 0
20 PRINT "I'VE GOT THE NUMBER.":PRINT
30 INPUT "WHAT'S YOUR GUESS"; GU
35 CN = CN + 1
40 IF GU>NM THEN PRINT "MY NUMBER IS LOWER": PRINT:GOTO 30
50 IF GU< NM THEN PRINT "MY NUMBER IS HIGHER": PRINT:GOTO 30
60 IF GU = NM THEN PRINT "GREAT! YOU GOT MY NUMBER"
65 PRINT "IN ONLY "; CN ;" GUESSES.":PRINT
70 PRiNT "DO YOU WANT TO TRY ANOTHER (YIN)"
80 GET AN$: IF AN$= "" THEN 80
90 IF AN$ = "Y" THEN 2
100 IF AN$ < > "N" THEN 70
110 END

You can specify how large the number will be at the start of the program.
Then, it's up to you to guess what the number is.

A sample run follows along with an explanation.

ENTER UPPER LIMIT FOR GUESS? 25
I'VE GOT THE NUMBER.

WHAT'S YOUR GUESS? 15
MY NUMBER IS HIGHER.

WHAT'S YOUR GUESS? 20
MY NUMBER IS LOWER.

WHAT'S YOUR GUESS? 19
GREAT! YOU GOT MY NUMBER
IN ONLY 3 GUESSES.

DO YOU WANT TO TRY ANOTHER (YIN)?

55

The IFfTHEN statement (lines 4(H)()) compare your guess to the random
number (NM) generated by line 10. If your guess is wrong, the program tells you
whether your guess is higher or lower than NM.

Each time you make a guess, line 35 adds 1 to CN. CN is a counter that keeps
track of how many guesses you take to get the right number. The purpose of
this game, of course, is to guess the number in as few tries as possible.

When you get the right answer, the program displays the message, GREAT!
YOU GOT MY NUMBER, and tells you how many guesses you took.

Remember that the program creates a new random number each time you
play the game.

You might want to add a few lines to the program that also specify the lower
range of numbers generated by this game.

r--------.--------.----- .. -----.

PROGRAMMING TIPS:
In lines 40 and 50. a colon separates multiple statements on a single

line. This not only saves typing time. but it also conserves memory space.
Also notice that the IF/THE N statements in these two lines PRINT

something before branching to another line.

YOUR ROLL

The following program simulates the throw of two dice. You can play this lit
tle game by itself, or use it as part of a larger game.

5 PRINT "CARE TO TRY YOUR LUCK?"
10 PRINT "RE D DICE = ";INT(RND(1)*6) + 1
20 PRINT "WHITE DICE = ";INT(RND(1)*6) + 1
30 PRINT " PRE SS SPACE BAR FOR ANOTHER ROLL": PRINT
40 GET A$: IF A$ = '''' THEN 40
50 IF A$ = CHR$(32) THEN 10

From what you've learned about BASIC and random numbers, see if you can
follow what's going on in this program. As you may recall from the section on
programming the function keys, CHR$(32) is the character string code for the
space bar.

56

RANDOM GRAPHICS

As a final (lote on random numbers, and as an introduction to designing
graphics, try entering and RUNning this program:

10 PRINT "<CLRlHOME>"
20 PRINT CHR$(205.5 + RND (1));
30 GOTO 20

The function CHR$ (CHaracter String) gives you a character, based on a stan
dard code number from 0 to 255. Every character the 64 can print is encoded
this way. Appendix F lists the CHR$ codes for all keys.

A quick way of finding out the code for any character is to use the function
ASC (for the standard ASCII code). Type:

PRINT ASC("X")

X is the character you're checking. X can be any printable character, including
graphics characters. You must enclose the character in quotation marks.
Here's an example:

PRINT ASC("G")
71

The CHR$ function is the opposite of ASC.

PRINT CHR$(71)
G

If you type:

PRINT CHR$(205);CHR$(206)

the computer displays the two right side graphics on the M and N keys, which
are the characters used in the little maze program you just tried.

The formula 205.5 + RND(1) tells the computer to pick a random number bet
ween 205.5 and 206.5 There is fifty-fifty chance that the random number will be
above or below 206. CHR$ ignores fractional values, so half the time the
character with code 205 is printed, and the rest of the time code 206 is
displayed.

You can experiment with this program by adding or subtracting a couple f
tenths from 205.5. This gives either character a greater chance of being
displayed.

57

CHAPTER 6
COLOR AND GRAPHICS

• How to Use Color and Graphics on Your Computer

• Printing Colors

• Color CHR$ Codes

• How to Use PEEKs and POKEs

• Screen Graphics

• Screen Memory Map

• Color Memory Map

• More Bouncing Balls

HOW TO USE COLOR AND GRAPHICS ON YOUR COMPUTER

So far this book has presented some of the sophisticated computing
capabilities of your 64. But one of the most exciting features of your new com
puter is its outstanding ability to produce 1 6 different colors and a lot of dif
ferent graphics.

You've already seen a very simple demonstration of the graphics in the boun
cing ball program and in the maze program at the end of the last chapter. This
chapter introduces you to new concepts that explain graphic and color
programming, and that suggest ideas for creating your own games and advanc
ed animation.

60

PRINTING COLORS

When you tried the color aligment test in Chapter 1 , you discovered that you
can change text colors by simply holding down the CTRL key and pressing one
of the color keys.

The 64 offers a full range of 1 6 colors. Though only eight colors are printed on
the color keys, you can get eight more by holding down the � key and press
ing a color key. Here's a list of the colors:

KEYBOARD COLOR DISPLAY KEYBOARD COLOR DISPLAY

IBa BLACK .:::J [t a ORANGE
n
�4

IBa WHITE Ij [ta BROWN ..
&1111 RED II [til LT. RED �

lBIa CYAN � [ta GRAY 1 �
IBIII II [til 1[11

PURPLE GRAY 2

IDII GREEN D [til LT. GREEN II

IDa BLUE 1:1 [ta LT. BLUE 0
lBIa m [ta

••
YELLOW GRAY 3 ••

When we showed you the boucing ball program in the last chapter, you saw
that keyboard commands, such as cursor movement, can be written into PRINT
statements. In the same way you can also add text color changes to your pro
grams.

61

Type NEW and try experimenting with changing colors. Hold down the CTRL
key and at the same time press the 1 key. Now release both keys and press the
R key. Now hold down the CTRL key again and press the 2 key. Release the
CTRL key and type the A key. Move through the numbers, alternating with the
letters, and type out the word RAINBOW like this:

10 PRINT" j RjAj I jNj B jO j W"

18aBBaElIiB

You'll recall that cursor controls appear as graphic characters in the PRINT
statement. Color controls are also represented as graphic characters. The color
chart printed above shows the graphic characters that appear with each color.
Because of the graphic characters that are displayed when you select color
keys, your PRINT statement will look strange, but when you RUN the program,
you'll see that only the text of the message is displayed. The letters in the
message automatically change colors according to the color controls you plac
ed in the PRINT statement.

Now try making up some examples of your own, mixing any number of colors
within a single PRINT statement. Don't forget the second set of colors that you
can get by holding down the � key while you press a color key.

TIP:

After you RUN a program with color or mode (reverse) changes, you'll notice
that the READY prompt and any additional text you key in is the same as the
last color or mode change you made. To get back to the normal display, press
these keys together:

RUN/STOP and RESTORE

62

COLOR CHR$ CODES

Before you start reading this section, take a look at Appendix F, which lists
the CHR$ codes for all keys on the keyboard.

As you looked over the list of CHR$ codes, you probably noticed that each
color has a unique code, just like all the other keys and the keyboard controls. If
you print the codes themselves by using the CHR$ function mentioned in the
last chapter, you can get the same results you got by typing CTRL or � and
the color key in a PRINT statement.

For example, try this:

NEW
1 0 PRINT CHR$(1 47) : REM < CLR/HOME >
20 PRINT CHR$(28);"CHR$(28) CHANGES ME TO?"
RUN

CHR$(28) CHANGES ME TO?

When you RUN this program, the screen clears before the message in line 20
is PRINTed. The text should be red now.

In many cases, you'll find that it's much easier to use the CHR$ function to
change colors, especially if you want to experiment. The next page shows
another way to get a rainbow of colors. There are a number of similar lines in
the program (40 through 110), so use the editing keys to spare yourself a lot of
typing. See the notes at the end of the program listing to refresh your memory
on editing procedures.

NEW
1 REM AUTOMATIC COLOR BARS
5 PRINT CHR$(1 47) : REM CHR$(147)= CLR/HOME
1 0 PRINT CHR$(1 8);" ";:REM REVERSE BARS
20 CL = INT(8*RND(1))+ 1
30 ON CL GOTO 40,50,60,70,80,90,1 00,1 1 0
40 PRINT CHR$(5);: GOTO 10
50 PRINT CHR$(28);: GOTO 1 0
60 PRINT CHR$(30);: GOTO 10
70 PRINT CHR$(31);: GOTO 1 0
80 PRINT CHR$(144);: GOTO 10
90 PRINT CHR$(156);: GOTO 10
1 00 PRINT CHR$(1 58);: GOTO 1 0
110 PRINT CHR$(1 59);: GOTO 10

Type lines 5 through 40 normally. Your display should look like this:

1 REM AUTOMATIC COLOR BARS
5 PRINT CHR$(1 47) : REM CHR$(1 47) = CLR/HOME
1 0 PRINT CHR$(1 8); .. ";:REM REVERSE BARS
20 CL = INT(8*RND(1))+ 1
30 ON CL GOTO 40,50,60,70,80,90,1 00,1 1 0
40 PRINT CHR$(5);: GOTO 1 0
•

6 3

EDITING NOTES:

Use the <CRSR-up > key to position the cursor on line 40. Then type 5 over
the 4 of 40. Now use the < CRSR-right > key to move over to the 5 in the CHR$
parentheses. Press SHIFT and INST/DEl to open up a space, and key in 28.
Now just press RETURN with the cursor anywhere on the line.

The display should look like this now:

NEW

1 REM AUTOMATIC COLOR BARS
5 PRINT CHR$(1 47) : REM CHR$(1 47)= ClR/HOME
10 PRINT CHR$(1 8);" ";:REM REVERSE BAR
20 Cl = INT(8*RND(1))+1
30 ON Cl GOTO 40,50,60,70,80,90,1 00,1 1 0
50 PRINT CHR$(28);: GOTO 1 0

Don't worry about line 40; it's still there, as you can see by LiSTing the pro
gram. Follow the same steps to modify line 40 with a new line number and
CHR$ code until you've entered all the remaining lines. As a final check, LIST
the entire program to make sure all the lines are right before you RUN it.

You probably understand the color bar program except for line 30. Here's a
brief explanation of how this program works.

Line 5 prints the CHR$ code for ClR/HOME.
Line 1 0 turns on reverse type and prints 5 spaces, which turn out to be a bar

since they're reversed. The first time through the program, the bar is light blue,
the normal screen display color.

Line 20 uses the random function to select at random a color between 1 and
8.

Line 30 uses a variation of the IFITHEN statement, called ON/GOTO, which
lets the program choose from as list of line numbers where the program will go
next. If the ON variable (in this case Cl) has a value of 1, the program goes to
the first line number listed (here it's line 40). If the variable has a value of 2, the
program goes to the second line listed, and so on.

Lines 40 through 110 just convert the random key colors to the appropriate
CHR$ code for that color and return the program to line 10 to PRINT a section
of the bar in that color. Then the whole process starts again.

See if you can figure out how to produce 16 random colors. Expand
ON/GOTO to handle the additional colors and add the remaining CHR$ codes.

64

HOW TO USE PEEKS AND POKES

PEEKS and POKES let you search around inside your computer's memory
and stick things in exactly where you want them.

You'll recall that in Chapter 4 we explained variables as being like little slots
in the computer's memory, with the variable name as the slot's address. Well,
imagine some more specially defined slots in the computer that stand for
specific memory locations and that have numbers for addresses.

Your 64 looks at these memory locations to see what the screen's
background and border colors should be, what characters to display on the
screen and where to display them, etc.

You can change the screen colors, define and move objects, and even create
music by POKEing a different value into the specific memory slots.

Imagine some memory slots looking something like this:

I
53�80

I I
53�81

I
53282 �5::-:3"""'28::-:3"---'

BORDER
COLOR

BACKGROUND
COLOR

The first two slots are the memory locations for the border and background
colors on your screen. We've put 2, the value for RED in the border color box,
and 1, the value for WHITE in the background color box. Now try typing this:

POKE 53281,7 <RETURN>

The background color of your screen will change to yellow because we put
the value 7, for yellow, in the location tha' controls backgound color.

Try POKEing different values intI) the background color location and see
what result you get. Here's a list of the values to POKE for each color available
on your 64:

0 BLACK 8 ORANGE
1 WHITE 9 BROWN
2 RED 10 light RED
3 CYAN 11 GRAY 1
4 PURPLE 12 GRAY 2
5 GREEN 13 light GREEN
6 BLUE 14 light BLUE
7 YELLOW 15 GRAY 3

Here's a little program that you can use to display various border and
background color combinations:

NEW
10 FOR BO = OTO 15
20 FOR BA = 0 TO 15
30 POKE 53280,BA
40 POKE 53281 ,BO
50 FOR X = 1 TO 500: NEXT X
60 NEXT BA : NEXT BO
RUN

65

This program uses two simple loops to POKE various values to change the
background and border colors. Line 50 contains a DELAY loop, which just
slows the program down a little bit.

If you're curious about what value is currently in the memory location for
background color, try this:

?PEEK (53280) AND 15

PEEK looks at a whole byte, but colors only use half a byte, called a nybble.
To PEEK just this nybble, you have to add the AND 15 to your PEEK statement.
If you used this PEEK after RUNning the previous program, you'd get 15 as the
answer because the last border color POKEd was GRAY 3, which is 15.

In general, PEEK lets you see what value is currently in a specific memory
slot. Try adding this line to your program to display the values of BORDER and
BACKGROUND as the program RUNs.

25 PRINT CHR$(147); "BORDER = "; PEEK(53280) AND 15,
"BACKGROUND = "; PEEK (53281) AND 15

SCREEN GRAPHICS

SO far when you've PRINTed information, the computer has handled the in
formation sequentially: one character PRINTed after the next, starting from the
current cursor position, except when you asked for a new line, or used a comma
in PRINT formatting.

You can PRINT data in a particular place by starting from a known place on
the screen and PRINTing the correct number of cursor controls to format the
display. But this takes time and program steps.

But just as there are certain locations in the 64's memory to control color,
there are also memory locations that you can use to control screen locations.

66

SCREEN MEMORY MAP

The 64's screen can hold 1000 characters (40 columns by 25 lines), so there
are 1000 memory locations set aside to represent what is on the screen. Imag
ine the screen as a grid, 40 by 25, with each square standing for one memory
location.

Each memory location can contain one of the 256 different characters the 64
can display (see Appendix E). Each of these 256 characters is represented by a
number from 0 to 255. If you POKE the value for a character into a specific
screen memory location, that character will be displayed in that specific screen
location.

Here's a grid that represents your screen, complete with the numbers of each
screen memory location.

COLUMN
10 20 30 39

1063
•

1024-
1064
1104
1144
1184
1224
1264
1304
1344
1384 '"
1424 10 0

1464
:E

1504
1544
1584
1624
1664
1704
1744
1784
1824 20
1864
1904
1944
1984 24

t
2023

67

The 64's screen memory normally begins at memory location 1 024 and ends
at location 2023. Location 1 024 is the upper left corner of the screen. Location
1 025 is the position of the next character to the right, and so on. Location 1 063
is the right-most position of the first row. Following the last character in a row,
the next location is the left-most character on the next row down.

Suppose you want to control a ball bouncing on the screen. The ball is in the
middle of the screen, column 29, row 1 2. The formula for calculating the
memory location on the screen is:

POINT = 1 024 + X + 40 * Y.-- row
+ column

where X is the column and Y is the row.
Therefore, the memory location of the ball is:

POINT = 1 024 + 20 + 480�row (40x1 2)
POINT = 1 524 + column

Clear the screen with SHIFT and CLRlHI_ ME and type:

POKE 1 5�,81 +- character code
location

This POKE statement makes a ball anpear in the middle of the screen. You
have placed a character directly into screen memory without using the PRINT
statement. However, you can't see the ball yet because it's the same color as
the screen background.

COLOR MEMORY MAP

You can change the color of the ball that appeared by altering another range
of memory. Type:

POKE 55796,2+- color
L..location

This changes the ball's color to red.
Every spot on the 64's screen has TWO memory locations: one for the

character code, and one for the color code. The color memory map begins at
location 55296 (upper left corner), and continues on for 1 000 locations. You use
the same color codes, 0 through 1 5, that you used to change border and
background colors, to directly change character color.

We can modify the formula for calculating screen memory locations to give
us the locations to POKE colors. Here's the new formula:

COLOR PRINT = 55296 + � + 40 * Y.-- row
L.----column

68

MORE BOUNCING BALLS

Here's a revised bouncing ball program that directly prints on the screen us
ing POKEs rather than cursor controls within PRINT statements. When you
RUN this version, you'll see that it's much more flexible than the earlier pro
gram and it leads up to programming more sophisticated animation.

NEW
10 POKE 53281,1: PRINT "<CTRUWHITE><SHIFT CLR/HOME>"
20 POKE 53280,7: POKE 53281,6
30 X=1:Y= 1
40 OX = 1 : OY = 1
50 POKE 1024 + X + 40*Y,81
60 FOR T = 1 TO 10 : NEXT
70 POKE 1024 + X + 40*Y,32
80 X = X + OX
90 IF X <= 0 OR X > = 39 THEN OX = - OX
100 Y = Y + OY
110 IF Y < = 0 OR Y> = 24 THEN OY = - OY
120 GOTO 50

Line 10 sets the cursor color to white and then clears the screen.
NOTE: Clearing the screen on (NTSC) 64s sets the color RAM to white but on
(PAL) 64s the color RAM is set to the current background color (here white).

Line 20 sets the background color to blue and the border color to yellow.
The X and Y variables in line 30 keep track of the ball's current row and col

umn position. The OX and OY variables in line 40 are the horizontal and vertical
direction of the ball's movement. When a + 1 is added to the value of X, the ball
moves to the right; when - 1 is added, the ball moves to the left. A + 1 added to
Y moves the ball down a row, and a - 1 added to Y moves the ball up a row.

Line 50 puts the ball on the screen at the current X,Y position. Line 60 is a
delay loop, which is included to keep the ball on the screen long enough for you
to be able te see it.

Line 70 erases the ball by putting a space (code 32) where the ball was on the
screen.

Line 80 adds the direction factor to X.
Line 90 tests to see if the ball has reached one of the side walls, and reverses

the ball's direction if there's a bounce. Lines 100 and 110 do the same thing for
the top and bottom walls.

Line 120 sends the ball back to display and moves the ball again.
You can change the ball to any other character by changing the code in line

50 from 81 to another character code.
If you change OX or OY to 0 the ball bounces straight instead of diagonally.
We can also add a little intelligence to the bouncing ball program. So far the

only thing you checked for is whether the ball is going out of bounds on the
screen. Try adding the following lines to the program:

21 FOR L = 1 TO 10
25 POKE 1024 + INT(RNO(1)*1 000),160 +-(REVERSE SPACE)
27 NEXT L
115 IF PEEK(1 024 + X + 40*Y) = 166 THEN OX = -OX: GOTO 80

Lines 21 to 27 put ten blocks on the screen in random positions. Line 115
PEEKs to see if the ball is about to bounce into a block, and, if so, it changes
the ball's direction.

69

CHAPTER 7

INTRODUCTION TO SPRITES

• Bits and Bytes
• Creating a Sprite
• Designing a Sprite
• Turning Sprites On
• Sprite Colors
• Positioning Sprites
• Expanded Sprites _

• Creating More than One Sprite
• Sprite Priorities
• Turning Sprites Off.

In previous chapters, we've shown you how to use graphic symbols in PRINT
statements to create animation and other visual effects.

In chapter 6, we also showed you how to POKE character codes in specific
screen memory locations, which put characters directly on the screen in the
place you selected.

In both of these cases, you have to create objects from existing graphic sym
bols, so these methods take a lot of work. When you want to move the object,
you must use a number of program statements to keep track of the object and
move it to a new place. And sometimes the shape and resolution of the object
isn't as good as you'd like it to be because of the limitations of using graphic
symbols.

You can eliminate a lot of these problems by using sprites in animated se
quences. A sprite is a high-resolution porgrammable object that you can make
into just about any shape by using BASIC commands. All you have to do to
move the object is simply tell the computer the position where you'd like the
sprite to go. The computer takes care of the rest.

But this isn't all you can do with sprites. For example, you can change their
color, you can tell if one object collides with another, you can make them go in
front and behind each other, and you can easily expand their size.

You have to learn a few more details about your 64 and the way it handles
numbers before you can use sprites. It's not difficult, though, so just follow the
examples and you'll be making your own sprites do amazing things in no time.

72

BITS AND BYTES

Before you can use sprites it's important that you understand a few general
things about how computers work.

In the decimal system, we count in "tens" using values of 0-9. When a
particular position overflows its maximum value of 9, it re-cycles to zero and
carries one to the next (left-hand) position. For example, the number 64 means
6 x (10) + 4 x (1). The position of each digit is important. The value of 64 is
calculated as follows:

6 x 1 0T 1 +4 x10TO

NOTE: Any number raised to the power of zero equals 1 .

Computers store information as a series of electrical charges, representing 1 s
and Os. Each cell within memory holds a pattern of eight ones and zeros called
binary digits or BITS. These cells are called BYTES. A bit, which is the smallest
amount of information a computer can store, can be turned ON, giving it a value
of 1 , or OFF, which has a value of O.

When you enter information into the computer via the keyboard, key
depressions are converted into 8 bit patterns of ones and zeros, and transferred
to memory.

The rules for binary arithmetic are much simpler than other systems since
digits can only have two values, 0 or 1 . As illustrated in the previous example, the
decimal system uses the base of 1 0, whereas the binary system uses the base of 2.

One bit can contain one of two combinations, 0 or 1 . There are four possible
combinations of 1 s and Os in two bits (2T 2) and with three bits, eight possible
combinations (213). The following illustration shows the range of values.

NO. OF NO. OF
BITS VALUES POSSIBLE COMBINATIONS

.-

1 2 t 1 ON 1
= 2 OFF 0

2 2 t 2 ON and ON 1 1
= 4 ON and OFF 1 0

OFF and ON 01
OFF and OFF 0 0

3 2t3 ON and ON and ON 1 1 1
= 8 ON and ON and OFF 1 1 0

ON and OFF and ON 1 0 1
ON and OFF and OFF 1 0 0
OFF and ON and ON 01 1
OFF and OFF and ON 0 0 1
OFF and ON and OFF 0 1 0
OFF and OFF and OFF 0 0 0

73

As you can see, the number of combinations is 2 raised to the power of the
number of bits. For one BYTE, or eight bits, you can store 256 different values i.e.
2j8.

When all eight bits are OFF, i.e. set to 0, the byte contains a value of zero.
When all eight bits are ON, i.e. set to 1 , the byte has a value of 255. Note that the
combinations range from 0 to 255 inclusive.

You may convert any binary number to a decimal value simply by adding those
powers of two where a bit has been set. The example below illustrates how a
decimal value of 1 81 is held in binary form:

BINARY POSITIONS 2F 2j6 2j5 2j4 2j3 2j2 2j1 2jO

DECIMAL EQUIVALENT

BIT VALUES

1 28 64 32 1 6

o

Adding up the values of the ON bits gives:

2j7 + 2j5 + 2j4 + 2j2 + 2jO

or 1 28 + 32 + 1 6 + 4 + = 1 81

8 4 2

o o

The following is a table showing binary to decimal conversion. A zero indicates
that the bit is OFF, and a 1 shows that a bit is ON. To calculate the value of the
entire byte, add the decimal value of each ON bit.

74

BINARY TO DECIMAL CONVERSION

Decimal Value

128 64 32 i6 8 4 2 1
0 0 0 0 0 0 0 1 2jO
0 0 0 0 0 0 1 0 211
0 0 0 0 0 1 0 0 2j2
0 0 0 0 1 0 0 0 2j3
0 0 0 1 0 0 0 0 2j4
0 0 1 0 0 0 0 0 2j5
0 1 0 0 0 0 0 0 2j6
1 0 0 0 0 0 0 0 2j7

TIP:
Converting binary numbers to their decimal values is the basis for creating

data to represent and manipulate sprites. Here's a program that does these
conversions for you. Since you'll be using this program often, you should enter
and save it.

5 REM BINARY TO DECIMAL CONVERTER
10 INPUT "ENTER 8-BIT BINARY NUMBER :";A$
12 IF LEN (A$) < > 8 THEN PRINT " 8 BITS PLEASE. .. ": GOTO 1 0
15 TL = 0: C ,,; 0
20 FOR X = 8 TO 1 STEP -1 : C = C + 1
30 TL = TL + VAL(MID$(A$,C,1))*2 t(X-1)
40 NEXT X
50 PRINT A$;" BINARY";" = ";TL;" DECIMAL"
60 GOTO 1 0

At line 1 0 you enter a binary number as the string A$. Line 1 2 uses the LEN
(length) function to check to be sure you entered 8 binary digits. If you didn't,
the program asks for more and repeats line 1 0.

In line 1 5, TL keeps track of the binary number's decimal value, and C in
dicates which bit is being worked on as the program goes through the loop.

Line 30 updates the value of TL. Appendix C explains the VAL and MID$ func
tions.

Line 50 PRINTs the binary and decimal values of the byte. Line 60 returns the
program to the beginning.

75

CREATING A SPRITE

Sprite Registers

Before going any further you need to know a little about how sprites are
manipulated by the COMMODORE 64.

Sprites are handled by a special chip inside your COMMODORE 64. This is
called the VIC II chip. This chip contains a series of special bytes called
REGISTERS which are provided specifically for sprite handling. Each register
performs a separate function. For example, the ENABLE REGISTER controls
whether a sprite is active or inactive, while the EXPAND REGISTERS control the
size of a sprite. When you work with sprites, think of a register as a byte with a
specific function. The registers we will be talking about in this chapter are listed
below:

REGISTER No.

0-1 5
1 6
21
23
27
28
29

37-38
39-46

DESCRIPTION

SPRITE POSITIONING
EXTRA MOVEMENT
ENABLE (ON/OFF)
EXPAND (VERTICAL)
PRIORITIES
MULTI-COLOR SELECT
EXPAND (HORIZONTAL)
MUL TI-COLORS
COLOR

Each of these registers, or bytes, have been assigned a specific location in the
memory of the computer. They start at location 53248. This is the 'base address'
of the VIC II chip. To access individual registers, it is easier to assign a variable
with the value of the start address and then add the register number to it, e.g.
V=53248: POKE V+21 ,255. This will put the value of 255 into register 21 .

The VIC II chip in your COMMODORE 64 does all the work of creating and
keeping track of characters and graphics, creating colors and moving sprites
around. All you have to do is to tell the computer the following three details about
the sprite:

What it should look like
What color it should be
Where it should appear

The VIC II chip contains 46 registers and controls up to 8 sprites at a time. You
can design, create and move your sprite by POKEing the appropriate decimal
value in the particular memory location.

76

D ESIG NING A SPRITE
A sprite is made up of 504 dots. These are arranged in a 24 dot wide by 2 1 dot

deep grid. As we mentioned earlier, you can use up to 8 sprites at a time,
numbered from 0 to 7. Each dot on the sprite corresponds to a bit. In order to
design a sprite, you simply set the relevant bit on the grid. Each line on the grid
contains 24 bits (three bytes). Each sprite takes up 64 bytes in memory, i.e. 21
multiplied by 3 plus one spare byte. (For the more technically minded, the
number 64 is much easier for the VIC II chip to work with because it is a power of 2
and therefore easier to multiply.)

Because you can visualise a sprite inside a grid, the design process is greatly
simplified. Suppose you want to create a balloon and make it float around the
screen. The grid on page 78 shows its shape. You can set up your own grid
preferably using lined, or better still, graph paper. Draw a grid that is 21 squares
high and 24 squares across. Divide the 24 squares across into 3 sections of 8
spaces.

The next step is to convert the graphic design into data the computer can use.
Number the 8 squares in each of the three sections 1 28, 64, 32, 1 6, 8, 4, 2 and 1 .
These values are equivalent to 2j7, 2j6, 2j5, 2j 4, 2j3, 212, 211 and 2jO.

Number the squares down the left hand side of the page from 1 -21 for each
row. Now fill in the grid with any design, or use the balloon that we've drawn. It's
easier to outline the shape first, then go back and fill in the grid.

Think of the squares you have filled in as ON bits, and substitute a 1 for each
filled square. Think of the squares t�at aren't filled as OFF bits, and give them a
value of zero.

Now look along row 1 and think of each 8 square section as a byte. Convert
each section of 8 bits into a decimal value. You can even use your Binary to
Decimal converter program if you wish. Now convert each of the 21 rows into 3
decimal values, giving 63 values in all.

77

SERIES SERIES SERIES
1 2 3

32 32

1
2
3
4
5
6
7
8
9

� 10
""11

12
13
14
15
16
17
18
19
20
21

10 15 20 24
COLUMN

Now look at the design of the balloon. The first series of 8 squares on the first
row are all blank, therefore the bits are all OFF giving a value of zerO. The middle
series on row 1 looks like this:

00000000 011 1 1 1 1 1 00000000

The third series of 8 squares on the first row also contains only blanks so it also
equals zero. So the data for the first line is:

DATA 0, 1 27, 0

The three series of dots that make up row two are calculated like this:

Series 1: I 0 o I 0

Series 2: Ll 1

i 1 i
128 + 64 + 32

Series 3: IT I
i

128 +

1 0

i
64

0

1

i
+ 16

0

o � 0 I 0

1 1

i i i i
+ 8 + 4 + 2 + 1

0 0 0 0

78

255

192

The data for the second row is:

DATA 1 , 255, 1 92

Use this method to convert the three series of 8 squares in each of the
remaining rows. Once you have completed these calculations, you are ready to
write a BASIC program to use the balloon (or any other shape) since the sprite
has now been converted into values your computer can understand.

To demonstrate the use of sprites, type in the following program:

1 REM UP, UP, AND AWAY
5 PRINT "(CLR/HOME)"
10 V=53248 : REM START OF DISPLAY CHIP
1 1 POKE V+ 21 ,4 : REM ENABLE SPRITE 2
1 2 POKE 2042,1 3: REM SPRITE 2 DATA FROM BLOCK 1 3
20 FOR N = ° TO 62: READ 0 : POKE 832 + N,O: NEXT
30 FOR X = ° TO 200
40 POKE V + 4,X: REM UPDATE X COORDINATES
50 POKE V + 5,X: REM UPDATE Y COORDINATES
60 NEXT X
70 GOTO 30
200 DATA 0,1 27,0,1 ,255,1 92,3,255,224,3,231 ,224
210 DATA 7,21 7,240,7,223,240,7,21 7,240,3,231 ,224
220 DATA 3,255,224,3,255,224,2,255,1 60,1 ,1 27,64
230 DATA 1 ,62,64,0,1 56,1 28,0,1 56,1 28,0,73,0,0,73,0
240 DATA 0,62,0,0,62,0,0,62,0,0,28,0

If you have entered everything correctly, when you type "RUN" and press
RETURN, your balloon should sail across the screen. At this stage, you will not
understand the meaning of much of the program but, as we explain each stage of
sprite handling, we will use the program to illustrate each feature.

Line numbers 200-240 relate to the definition of your balloon and contain 21
sets of three values, i .e. one set for each row on your design chart.

79

SPRITE POINTERS

The sprite pointer indicates where you have stored your sprite in memory. The
sprite pointers are stored in 8 bytes from location 2040 to 2047 inclusive. The
normal location of the pointer for sprite 0 (the first sprite) is 2040; the location for
the pointer for sprite 1 is 2041 ; and so on with location 2047 used as the location
of the pointer for sprite 7.

Each sprite pointer can contain a value between 0 and 255. This number,
multiplied by 64, corresponds to the start address of your sprite data. Since each
sprite uses 64 bytes, the sprite pOinter can contain a block number anywhere
within the first 1 6K block of memory accessible by the VIC II chip, i.e. 256 * 64. It
is also possible to use other 1 6K blocks. Further details can be found in the
COMMODORE 64 Programmer's Reference Guide.

NOTE: It is always advisable to store the data for your first sprite at block 255 and
then store data for subsequent sprites in the next available blocks working
downwards. This will prevent your sprite data from interfering with the BASIC
program. If you find that the sprite data is writing over the end of your BASIC
program, you must store your sprite data in the next available 1 6K block of
memory or move the BASIC program above the sprite data. Again, details on
how to do this can be found in the COMMODORE 64 Programmer's Reference
Guide.

In the balloon program, line 1 0:

V = 53248

assigns the value of the start address of the VIC II chip to the variable V. Later in
the program you can add the register number to the address stored in V. For
example line 1 1 :

POKE V+21 ,4

references register number 21 .
Line 1 2 of the balloon program:

POKE 2042,255

places the data from sprite 2 into block 255.

80

TURNING SPRITES ON
Before you see and use your sprites, you must first activate them. You do this

by using the SPRITE ENABLE register, register number 21 . As mentioned
above, line 11 in the balloon program turns on sprite 2. This is done by placing
the value 4 in the register. This is 2 to the power of the sprite number 2, i.e. the
sprite you are initializing.

Refer to the structure of a byte earlier in the chapter if you do not understand
how we get this value. If you had wanted to turn on two sprites, you would simply
add the decimal values together. For example, to turn on sprites 2 and 3 add 8
and 4 (2t2 + 2t3). The instruction would then be:

POKE V+21 , 12

TIP:
An easier way to turn on a selected sprite is to use a simple calculation

that sets the required bit in the SPRITE ENABLE register. In the program
statement below, SN equals the sprite number (0-7) that you want to turn on.

POKE V + 21 , PEEK(V + 21) OR (2tSN)

SPRITE COLORS

A sprite can be any of the 16 colors available on your COMMODORE 64. The
colors are numbered 0-15. Chapter 6 and Appendix G contain the colors and
their codes. As you can see from the VIC II chip Register Map, each sprite has its
own color register. Register numbers 39-46 are used for this purpose. Register
39 holds the color for sprite 0, register 40 for sprite 1 , and so on with register 46
holding the color for sprite 7.

When you see your sprite on the screen, the dots are displayed in the color
contained in the color register. The rest of the sprite is transparent and shows
whatever color is behind the sprite.

If you wanted to change the color of sprite 2 to light green (code number 13),
simply POKE the color code in the sprite's color register as follows:

POKE V + 41 ,13

81

POSITIONING SPRITES

Now you've made a sprite, you want it to appear and move around the screen.
To do this your COMMODORE 64 uses three positioning registers:

a) Sprite X Positioning Register
b) Sprite Y Positioning Register
c) Most Significant X Position Register.

The X and Y Position Registers work together to pinpoint where your sprite
appears on the screen. The X Position Register positions the sprite in the
horizontal direction and the Y Position Register positions the sprite in the vertical
direction. On the VIC II chip register map notice that registers 0-1 5 are used for
the X and Y co-ordinates. The registers are arranged in pairs as fol'l")ws:

Register 0 holds the X co-ordinate for sprite 0
Register 1 holds the Y co-ordinate for sprite 0
Register 2 holds the X co-ordinate for sprite 1
Register 3 holds the Y co-ordinate for sprite 1 .

This pattern is repeated with Registers 1 4 and 1 5 holding the X and Y co
ordinates for sprite 7. There is a further register (1 6) which we shall discuss later.

You can position your sprite. by simply POKEing values into the appropriate
registers. You need both X and Y co-ordinates to position your sprite. Calculate
all positions from the TOP LEFT of your sprite area. It does not matter how many
dots you fill up in the 24 x 21 dots area allocated to your sprite design. The
position is still calculated from the top left corner.

If you look at the balloon program once again, statement numbers 30-70 use a
FOR NEXT loop to move the balloon diagonally across the screen from left to
right. These statements increment the values of the X and Y co-ordinates by
POKEing the positions into registers 4 and 5, the registers for sprite 2, until both
values reach 200. Line 70 then runs the program again.

You may have noticed that when the program was running, the balloon did not
move to the far right hand side of the screen. Positioning in the horizontal
direction is difficult since you need 320 locations and you therefore need an
additional bit, which will then give you up to 51 2 positions. If you do not
understand how we arrived at this figure, think of an extra bit being added to the
left hand side of a byte. This would be the equivalent of 2 raised to the power of 8.

The extra bits for all sprites are stored in the Most Significant Bit Register
(MSB), register 1 6. Bits 0-7 of this register correspond to sprites 0-7 respectively.
If you are not using positions greater than 255, the corresponding extra bit
position must be turned off, i.e. it must contain a value of zero.

82

Here's how the MSB works: after you've moved the sprite to X location 255,
POKE the sprite's decimal value into register 1 6. For example, to move sprite 6
to horizontal locations 256 through 320, use this statement:

POKE V + 1 6,64

Then use a loop to move sprite 6 the 64 spaces from location 256 to 320:

FOR X = 0 to 63: POKE V + 1 2,X: NEXT

The following program revises the original balloon program so that sprite 2
moves all the way across the screen:

10 V = 53248: POKE V + 21 ,4 : POKE 2042,1 3
20 FOR N = 0 TO 62 : READ Q : POKE 832 + N,Q : NEXT
25 POKE V + 5, 100
30 FOR X = 0 TO 255
40 POKE V + 4,X
50 NEXT
60 POKE V + 1 6,4
70 FOR X = 0 TO 63
80 POKE V + 4, X
90 NEXT
100 POKE V + 1 6,0
1 10 GOTO 30

Line 60 sets the most significant bit for sprite 2.
Lines 70 through 90 contain the loop that moves sprite 2 across screen loca

tions 256 through 320.
Line 100 turns OFF the MSB so that sprite 2 can go back to the left edge of

the screen. In other words, when the MSB is ON, the sprite can only move from
locations 256 through 320. You have to turn the MSB back OFF before you can
move the sprite from locations 0 through 255.

Note that the program we used for turning on individual sprites can also be
used to set a specific MSB. The complementary statement which will turn OFF a
specific bit is:

POKE V+21 , PEEK(V+21) AND (255-(2jSN))

where SN is the number of the sprite you wish to move.

EXPANDED SPRITES

You can increase the size of each dot of the sprite so that the sprite is twice as
wide, twice as deep or expanded in both directions at once.

There are two EXPAND registers:

Register 23 doubles the width of the sprite
Register 29 doubles the height of the sprite.

The method for expanding sprites is the same as that used when enabling
them, e.g. to expand a specific sprite in the X direction only, use the following
statement:

POKE V+23, PEEK (V+23) OR 2t SN

where SN is the number of the sprite you wish to expand.

83

The same applies when doubling the height of a sprite except that this time you
use V+29.

Try adding the following line to the original balloon program:

POKE V + 23,4: POKE V + 29,4 : REM EXPAND SPRITE

When you type "RUN", the balloon has now doubled in size. This is
because you POKEd the decimal value for sprite 2 (2t2) into register 23 which
doubles the height of the balloon, and into register 29 which doubles the
width of the balloon.

CREATING MORE THAN ONE SPRITE
It is a simple operation to create and store more sprites. Instructions on how to

do this are given earlier in this chapter. To add sprite 3 to your screen, include the
following lines in the original balloon program:

11 POKE V + 21,12
12 POKE 2042,13: POKE 2043,13
30 FOR X = 1 TO 190
45 POKE V + 6,X
55 POKE V + 7,190 - X

Line 11 turns ON sprites 2 and 3 by POKEing their combined decimal values
(4 and 8) into the sprite enable register (21).

Line 12 tells the computer to find the data for the sprites in block 255 of the VIC
II chip memory. Recall that 2042 is sprite 2's pointer and 2043 is the pointer for
sprite 3.

Lines 45 and 55 move sprite 3 around the screen by changing the values of the
X and Y co-ordinate registers of that sprite (V + 6 and V + 7).

When you RUN the program, you will see two balloons moving around the
screen. This is because we POKEd the same address into both sprite pointers.

The following lines put sprite 4 on the screen too:

11 POKE V + 21,28
12 POKE 2042,13:POKE 2043,13:POKE 2044,13
25 POKE V + 23,12: POKE V + 29,12
48 POKE V + 8,X
58 POKE V + 9,100

Line 11 turns ON sprites 2,3 and 4 by POKEing tl1eir combined decimal values
(4, 8 and 16) into the sprite enable register (21).

Line 12 tells the computer to find the data for all three sprites in block 255 of
memory.

Line 25 doubles the size of sprites 2 and 3 by POKEing their combined value
into the registers that control height and width expansion (23 and 29).

Line 48 moves sprite 4 halfway along the X axis (horizontally).
Line 58 positions sprite 4 halfway down the screen at location 100. Previously,

the Y co-ordinate has been changed in the program by the use of a FOR ... NEXT
loop. (See line 50 in the original progra.) But now the value for the Y co-ordinate
for sprite 4 (V + 9) stays the same during the program. This means that sprite 4
only moves horizontally.

84

SPRITE PRIORITIES

If you are using more than one sprite you may wish to make sprites cross over
each other on the screen. Sprite to sprite priority is preset. Sprites having the
lowest numbers have the highest priority, i.e. sprite 0 has the highest priority,
then sprite 1, sprite 2, etc. Sprite 7 has the lowest priority. Sprites with higher
priorities appear in front of sprites with lower priorities.

Sprite to background priority is controlled by the SPRITE BACKGROUND
PRIORITY register, register 27. Bits 0-7 in this register correspond to sprites 0-7.
These bits are normally set OFF (equal to zero) which means that the sprites
have a higher priority than the background, i.e. they pass OVER any data on the
screen. If you wish to switch this priority for any sprite(s) you must turn ON the
relevant bit(s). For example, the statement:

POKE V + 27,8

makes sprite 3 appear behind the characters that are on the screen.

TURNING SPRITES OFF

You can make a sprite disappear by setting the relevant bit in the SPRITE
ENABLE register (21) OFF. Do this using the following statement:

POKE V + 21 , PEEK (V + 21) AND (255 - 2tSN)

where SN is the number of the sprite you wish to turn off.

Boolean Operators

This instruction in the previous example uses what is known as a LOGICAL
OPERATOR, sometimes known as a BOOLEAN OPERATOR. In that example,
the AND was the logical operator. It is used to modify the first of two elements in
the statement, i.e. register 21.1t logically compares each corresponding bit of the
result of the PEEK statement according to the following rules:

1 AND 1 = 1
OAND 1 = 0
1 ANDO = 0
OANDO = 0

This is known as a TRUTH TABLE. As you can see, the bit being compared is
set OFF unless both bits contain 1. You can apply the above statement to set
OFF bits in any register for any sprite number. For example, you could have used
the same instruction to reduce the size of a sprite by simply substituting either
register 23 or 29. Let us see what happens when we turn off sprite 3.

Before the instruction is executed, register 21 contains 00001000. The result
of the expression after the PEEK statement is: 255 - 2t3 (8) = 247 or 11110111,
i.e. after the instruction has been executed, register 21 contains zero. If other
sprites had been ON, they would remain in the same state since both bits would
have contained 1.

85

The other Boolean operator we have used is OR. The truth table for this
operator is as follows:

1 OR 1 = 1
a OR 1 = 1
1 OR a = 1

aORa = a

If either bit is set, the corresponding result bit will also be set.
This chapter has only been an introduction to sprites. Try experimenting

yourself with the design and animation of your own sprites. Further details about
sprite handling can be found in the COMMODORE 64 Programmers' Reference
Guide.

86

CHAPTERS

MAKING SOUND AND MUSIC

• The SID Chip
• Sample Sound Program
• Playing a Song on Your 64

• Creating Sound Effects
• Filtering
• Music Composer

Your COMMODORE 64 computer is equipped with one of the most sophisticated
electronic music synthesizers available on any computer. This chapter is an
introduction to using your computer's sound chip, the SID chip. The main
features that the SID chip provides are:
a) Volume control
b) Multiple voices
c) Waveform
d) Frequency
e) Envelope generator (attack, decay, sustain, release)

THE SID CHIP

The SID (Sound Interface Device) chip contains 29 8-bit registers, numbered
0-28, each of which is responsible for a certain component of sound generation.
In this chapter, you will only be concerned with the first 25 registers. These are
stored between locations 54 272 to 54 296 inclusive.

Here is a summary of the SID register map:

REGISTER Nos.

0-6
7 - 13
14-20
2 1
2 2
24

DESCRIPTION

VOICE 1
VOICE 2
VOICE 3
LOW FREQUENCY
HIGH FREQUENCY
VOLUME CONTROL AND FILTERS

Before we go on to discuss how sounds are created, type in the following
program and then RUN it. This will demonstrate just a little of what may be
achieved by the SID chip.

88

EXAMPLE PROGRAM 1

5 S=54272
10 FOR L= S TO S+24: POKE L,O:NEXT:REM CLEAR SOUND CHIP
20 POKE S+5,9:POKE S+6,0
30 POKE S+24, 15:REM SET MAXIMUM VOLUME LEVEL
40 READ HF, LF, DR
50 IF HF<O THEN END
60 POKE S+l , HF: POKE S,LF
70 POKE S+4, 33
80 FOR T=l TO DR:NEXT
90 POKE S+4, 32:FOR T=l TO 50:NEXT
100 GOT040
1 10 DATA 25, 177,250,28,2 14,25 0
120 DATA25, 177,250,25, 177,25 0
130 DATA25, 177, 125,28,2 14, 125
140 DATA 32,94,750,25, 177,250
150 DATA 28,2 14,250, 19,6 3,25 0
160 DATA 19,6 3,250, 19,6 3,25 0
170 OATA 2 1, 154,63,24,63,6 3

180 DATA25,177,250,24,63, 125
190 DATA 19,6 3,250,- 1,- 1 ,- 1

Line 5 stores the start location of the SID chip in S. All other registers are
accessed by simply adding their number to S.

Volume Control

Your COMMODORE 64 has 16 volume levels, numbered from ° (off) to 15
(maximum volume). Register 24 in the SID chip controls the volume level. To set
the volume, yO:.J simply POKE the value you want into this register. Line 30 in the
example program sets the maximum volume level (15).

You would normally only set the volume at the beginning of your program. Note
that the volume level determines the output from all three of your 64's voices.

Voices

Your COMMODORE 64 has three voices, which may be played separately or
simultaneously. The register map for each voice is shown below:

REGISTER NUMBERS

VOICE 1 VOICE 2 VOICE 3 DESCRIPTION

0 7 14 LOW FREQUENCY VALUES
1 8 15 HIGH FREQUENCY VALUES

2 9 16 LOW PULSE WIDTH
3 10 17 HIGH PULSE WIDTH
4 11 18 CONTROL REGISTER
5 12 19 ATIACK/DECAY SETIINGS
6 13 2 0 SUSTAIN/RELEASE SETTINGS

89

Frequency

Sound is created by the movement of air. Think of throwing a stone into a pool
and seeing the waves radiate outward. When similar waves are created in air, we
hear a sound. Every sound produced on your 64 is made up from a high and low
frequency value. Each of the three voices has two registers in which the
frequency values are stored. The two values in each voice are combined to form
the frequency value in 16 bit form.

A chart showing the memory locations for each voice's high and low frequency
registers is shown below:

VOICE FREQUENCY POKE NUMBER

1 HIGH 5427 3

1 LOW 54272

2 HIGH 54280

2 LOW 54279

3 HIGH 54287

3 LOW 54286

To play a musical note or sound, you must POKE the sound's high frequency
value into the high frequency location of the voice you want, and POKE the
note's low frequency value into the voice's low frequency location. Line 60 in the
example program POKEs the high and low frequencies from the data statements
into registers 1 and 0 respectively. This sets the frequency for voice 1.

Creating Other Frequencies

To create a frequency other than those listed in the note table, use the
following formula:

F = FYOUT I .06097

where FYOUT is the frequency you require.
To create the high and low frequency values for the note, you must first make F

into an integer, i.e. delete any numbers to the right of the decimal point.
Now use this formula to calculate the high frequency location:

HI = INT(F/256),

and the following formula to give you the low frequency location:

LO = F - (256 * HI)

Then to obtain the note, simply POKE the value for LO into the low frequency
register and the value for HI into the high frequency register of the voice from
which you wish to output the sound.

90

Waveforms

The type of waveform you select determines the timbre or quality of the sound
produced.

There are four types of waveforms:

Triangle. This waveform contains few harmonics and a mellow flute-like sound.
The shape of the triangle waveform looks like this:

Triangular:

Sawtooth. This waveform contains all the harmonics. It has a bright, brassy
quality. Here is what the sawtooth waveform looks like:

Sawtooth:

91

Variable pulse wave. This waveform contains variable rectangular waves.
Changing the pulse width makes sounds ranging from a bright, hollow noise to a
nasal, reedy pulse. Here's what it looks like:

Pulse (variable rectangular waves):

-PULSE WIOTH-

� '--- �

White noise. This waveform is used mainly for sound effects (e.g. explosions,
gunshots, surf) and ranges from a low rumbling to hissing. It looks like this:

White noise (used mainly for sound effects):

The waveform for each voice is held in three control registers. These are
numbered 4, 1 1 and 18 . The component parts of the control register for each
voice are as follows:

92

BIT Nos.

o
1-3

4
5
6
7

DESCRIPTION

GATE
UNUSED
TRIANGLE WAVEFORM
SAWTOOTH WAVEFORM
PULSE WAVEFORM
NOISE WAVEFORM

The GATE bit controls the Envelope Generator. When this bit is set to 1 , it
triggers the Envelope Generator and the ATIACK/DECAY/SUSTAIN cycle
begins. When the bit is reset to zero, the RELEASE cycle begins. Setting bits 4 , 5
or 6 to 1 selects that particular waveform.

Line 70 in the program sets the output of the sound for voice 1 using a
Sawtooth waveform. This line also sets the GATE bit.

You can set combinations of these bits, i.e. Pulse and Sawtooth, but this will
produce pretty weird sounds!

The Envelope Generator

The volume of a musical note changes from the moment you first hear it until it
dies out and you can't hear it any more. When a note is first struck, it rises from
zero volume to its peak volume. The rate at which this happens is called the
ATIACK. It then falls from the peak to a mid-range volume level. The rate at
which this occurs is called the DECAY. The mid-range volume is called the
SUSTAIN level. When the note stops playing, it falls from the SUSTAIN level to
zero volume. The rate at which it falls is called the RELEASE. The following is an
illustration of the four phases of a note:

SUSTAIN LEVEL --

A : 0: S

NOTE: ATTACK, DECAY and RELEASE are RATES. SUSTAIN is a LEVEL.

Each of the cycles above give certain qualities and restrictions to the shape, or
ENVELOPE of a sound. These bounds are collectively called parameters. The
A TI ACKIDECAY ISUST AIN/RELEASE parameters are collectively called ADSR.

There are two registers used for the ADSR parameters for each of the three
voices. These are 5 and 6 for voice 1, 12 and 13 for voice 2 and 19 and 20 for
voice 3 . The ATIACK and DECAY parameters share the first of each pair of
registers (5 , 12, 19) while the SUSTAIN and RELEASE parameters use registers
6 , 13 and 20.

93

These pairings are used because the settings only require 4 bits or half a byte.
This amount of storage is called a NYBBLE. The first four bits of a byte are called
the HIGH NYBBLE and the last four bits are called the LOW NYBBLE. The
ATTACK settings for the three voices are stored in the high nybbles of registers

, 5, 12 and 19 , while the DECAY settings are stored in the low nybbles of these
registers. The SUSTAIN settings for the three voices use the high nybbles in
registers 6, 13 and 20, while the RELEASE settings use the low nybbles in the
same registers.

Before POKEing any value into the ADSR registers you must first combine the
high and low nybbles by adding them together. For example, the ATTACK rates
occupy the 2j7, 2j6, 2j5, and 2j4 bits, so the values are 128, 64, 32 and 16.
DECAY rates use the 2j3, 2j2, 2j1 and 2jO bits, or 8,4, 2 and 1. Suppose you
want to set a high ATTACK value (12) and a low DECAY value (2). An easy way to
combine the two rates is to multiply the ATTACK value by 16 and add it to the
DECAY value. In this example, the resulting value is 194, i.e. 12*16+2. You can
use this formula whenever you wish to combine two values (range 0-1 5) into a
high/low nybble format.

Line 20 in the example program sets the ATTACK/DECAY rate to 0 ATTACK
and9 DECAY.

The maximum ATTACK rate is achieved by using a value of 15and multiplying
it by 16. You can increase the DECAY rate by adding together all the DECAY
values i.e. 8 + 4 + 2 + 1 = 15, which is the MAXIMUM DECAY RATE.

Here are some sample ATTACK/DECAY POKEs:

VOICE ATTACK DECAY

POKE 54277,66 1 MED (64) LOW (2)

POKE 54284,100 2 MED (64) +
LOW (32) MED (4)

POKE 54291,15 3 ZERO MAX
(8+4+2+1)

POKE 54284,255 2 MAX MAX
(128+64+32+ 16 +8+4+2+1)

94

Here's a sample program that illustrates what you can do with attack/decay
settings:

10 FORL= 54272T054296:POKEL,0: N EXT... Clears the SID chip
20 POKE54296,15 ... Set maximum volume
30 POKE54277,64 ... Set attack/decay
40 POKE54273,162:POKE54272,37 POKE one note in voice 1
50 PRINT"PRESS ANY KEY" Screen message
60 GETK$:IFK$= "''THEN60 Check the keyboard
70 POKE54276,17:FORT= H0200:NEXT Start triangle waveform
80 POKE54276,16:FORT = H050:NEXT Stop note
90 GOT050 ... Repeat execution

After you RUN the program a few times, try changing the ATIACKIDECAY
setting by changing line 30:

30 POKE 54277,190
Now RUN the program again and notice the difference in the note. Try other

combinations of attack and decay settings to get an idea of how you can use
different attack/decay rates to create a variety of sound effects.

SUSTAIN/RELEASE SETIING. Like ATIACKIDECAY, SUSTAIN/RELEASE
share a byte. But remember that this sharing doesn't mean that SUSTAIN and
RELEASE are alike. SUSTAIN is a LEVEL, while release, attack and decay are
RATES.

SUSTAIN is a proportion of maximum volume. You can sustain, or hold,
notes and sounds at any of 16 volume levels.

This table shows you what numbers to POKE for sustain/release values:

HIGH MEDIUM LOW LOWEST HIGH MED. LOW LOWEST
SUSTAIN SUSTAIN SUSTAIN SUSTAIN RELEASE RELEASE RELEASE RELEASE

128 64 32 16 8 4 2 1

NOTE: You can increase the SUSTAIN level by adding together all the SUSTAIN
values: 128 + 64 + 32 + 16 = 240, which is the MAXIMUM SUSTAIN LEVEL. A
SUSTAIN level of 128 is approximately 50% of volume. You can increase the
RELEASE rate by adding together all the RELEASE values: 8 + 4 + 2 + 1 =
15, which is the MAXIMUM RELEASE RATE.

Combine the sustain level and release rate the same way you combine the at
tack and decay rates: add the two values and POKE the total to the memory
location of the voice you want.

To see the effects of the sustain level setting add this line to the last sample
program:

35 POKE 54278,128
Now RUN the program again and note the change. With line 35, we tell the

computer to sustain the note at a HIGH SUSTAIN LEVEL (128). You can vary the
duration of a note by changing the count in line 70. Remember that the sustain
level maintains a note at a proportion of the volume as the note falls from its
peak volume; this isn't the same thing as the note's duration.

To see the effect of the release rate, try changing line 35 to POKE 54278,89
(sustain = 80, release = 9).

95

SAMPLE SOUND PROGRAM

This brief sound program summarizes what you've learned so far about mak
ing music on your 64:
1. Choose the vOice(s) you want to use. Recall that each voice uses different

memory locations into which you'll POKE values for waveform, attack rate,
etc. You can play 1,2, or 3 voice together, but this program only uses voice 1.

2. Clear the SID chip: 5 FORL= 54272 TO 54296: POKEL,O:NEXT
3. Set VOLUME: 10 POKE54296,15
4. Set An ACKIDECA Y rates:

to define how fast a note rises
to and falls from its peak
volume level (0-255): 20 POKE54277,190

5. Set SUSTAIN/RELEASE to
define level to hold note and
rate to release it: 30 POKE54278,248

6. Find note you want to play in
the TABLE OF MUSICAL
NOTES in App. M and enter
the HIGH-FREQ. and LOW
FREQ. values for that note
(each note requires 2 POKEs): 40 POKE54273,16:POKE54272,195

7. Start WAVEFORM (here,
TRIANGLE): 50 POKE54276,17

8. Enter a timing loop to time be
tween notes (we use 250 for a
quarter note): 60 FORT = H0250:NEXT

9. STOP note by turning off
chosen waveform: 70 POKE54276,16
Here's a longer program that further demonstrates your 64's music-making

abilities:
NEW
5 REM MUSICAL SCALE
7 FORL= 54272T054296:POKEL,0:NEXT clears SID chip
10 POKE 54296,15 sets vol u me
20 POKE54277,7:POKE54278,133 sets ald/s/r
50 READ A ... READs 1 st number from line 110
55 IF A = - 1 THENEND ENDs loop
60 READ B ... READs 2nd number
80 POKE54273,A:POKE54272,B POKEs 1st number from line 110 as

HI-FREQ and 2nd number as LOW
FREQ.

85 POKE54276, 17 starts note
90 FORT= H0250:NEXT:POKE54276,16 lets note play, then stops it
95 FORT = H050:NEXT sets time for RELEASE, time be-

tween notes
100 GOT020 .. restarts program
110 DATA 16,195,18,209,21,31,22,96 lists note value
120 DATA 25,30,28,49,31,165,33,135 from chart in App. M. Each part of

numbers = one note (16 and 19 =
4th octave C)

999 DATA-1 ENDs program (see line 55)

96

You can change to a sawtooth wave by changing line 85 to read
POKE54276,33 and line 90 to read FORT = n0250:NEXT:POKE54276,32.
Changing the waveform can dramatically change the sound your computer
produces.

You can also change the sound in other ways. For example, you can change
the harpsichord-like sound in the previous program to a banjo-like sound by
changing the ATTACK/DECAY rate of each note. Do this by changing line 20 to
read:
20 POKE54277,3:POKE54278,0 creates banjo effect by setting zero

SUSTAIN
As this program demonstrates, your 64 can sound like a variety of musical ill

struments.

97

PLAYING A SONG ON YOUR 64

The next program lets you play a line from a song, "Michael Row Your Boat
Ashore". The program uses the PULSE waveform, which is a variable width rec·
tangular wave. The third and fourth POKEs in line 10 define the pulse width for
this song.

In this song, we use a duration COlJ"t of 125 for an eighth note, 250 for a
quarter note, 375 for a dotted quarter note, 500 for a half note, and 1000 for a
whole note. When you program your own songs, you can increase or decrease
these numbers to match a particular tempo or your own musical taste.
2 FORL= 54272T054296: POKEL,O: NEXT
5 S= 54272
10 POKES + 24,15: POKES + 5,88: POKES + 3,15: POKES + 2,15: POKES + 6,89
20 READH: IFH = -HHENEND
30 READL
40 READD
60 POKES + 1,H: POKES,L: POKES + 4,65
70 FORT = HOD: NEXT: POKES + 4,64
80 FORT = H050: NEXT
90 GOTO 20
100 DAT A33, 135,250,42,62,250,50,60,250,42,62, 125,50,60,250
105 DATA56,99,250
110 DA T A50,60,5oo,0,0, 125,42,62,250,50,60,250,56,99
115 DATA 1000,50,60,500
120 DATA-1

Line 2 clears the SID chip.
Line 5 assigns the lowest SID chip memory location to the variable S.

Throughout the rest of the program, we just add the number of the SID register
to this variable. For example, POKES + 24,15 POKEs 15 to the volume register,
which is 54296, or 54272 + 24.

Line 10 POKEs values into:
1. The volume register: POKES + 24,15
2. Voice 1, ATIACKIDELAY rates: POKES + 5,88
3. Pulse width: POKES + 3,15 and POKES + 2,15
4. Voice 1, SUSTAIN level/RELEASE rate: POKES + 6,89

Line 20 READs the first number from the DATA statement. If that number is
- 1, the program ENDs automatically. This occurs when the final DATA state
ment (line 120) is read.

Line 30 READs the second number from the DATA list.
Line 40 READs the third number from the DATA list.
Line 60 POKEs:

1. The value for H that was assigned in the READH statement in line 20. Until
-1 is read, this value is assigned to the HIGH FREQUENCY register.

2. The value for L that was assigned in the READL statement in line 30. This
value is assigned to the LOW FREQUENCY register. Together these two
POKEs determine the pitch for one note.

3. The value that turns ON the variable pulse waveform for voice 1.

98

Line 70 uses a loop to set the duration for the note being played. The value
for D is assigned in the READ statement in line 40. As you can see, the numbers
in the DATA lists are clustered into threes: the first number (e.g., 35) is the high
frequency value for a note, the second number (e.g., 135) is the low frequency
value for the same note, and the third number (e.g., 250) sets the duration for
that note (e.g., a quarter note C).

Line 80 is a timing loop that determines release time between notes.
Line 90 sends the program back to READ the number set for another note.
Lines 100 through 120 contain all the DATA for the line from this song.

CREATING SOUND EFFECTS

Your 64's SID chip lets you create a wide variety of sound effects, such as an
explosion during a game, or a buzzer that warns you when you've made a
mistake.

Here are just a few suggestions for creating sound effects:
1. Vary rapidly between two notes to create a tremor sound.
2. Use the multivoice effects to play more than one voice at a time, with each

voice independently controlled, so you have different noises at once. Or use
one voice as an echo or response to another voice.

3. Use the different pulse widths to create different sounds.
4. Use the NOISE WAVEFORM to make white noise to accent tonal sound ef

fects, create explosion nOises, gunshots, footsteps, or alarms. When you
use the noise waveform with the same musical notes that create music, you
can create different types of white noise.

5. Combine several HIGH/LOW FREQUENCIES in rapid succession across dif
ferent octaves.

6. Try POKEing the extra note settings in Appendix M.
Here are some sample sound effects programs. The Commodore 64 Pro

grammer's Reference Guide contains more examples as well as more informa
tion on creating sound effects.

DOLL CRYING

NEW
5 FORL= 54272T054296:POKEL,0:NEXT Clears SID chip
10 S = 54272:POKE 54275,15:POKE 54274,40
20 POKES + 24,15 .. Sets volume
30 POKES + 4,65 .. Turns ON pulse waveform in

voice 1
40 POKES + 5,15 Sets attack/decay rate
50 FORX = 200T05STEP - 2 Sets timing loop for RELEASE or

time between notes
60 POKES + 1 ,40:POKES,X:N EXT Sets hi/lo frequencies
70 FORX = 150T05STEP - 2 Sets faster timing loop
80 POKES + 1,40:POKES,X:NEXT Sets hillo frequencies
90 POKES + 4,0 Turns OFF pulse waveform

99

SHOOTING

NEW
5 FORL= 54272T054296:POKEL,0:NEXT.. ... Clears SID chip
10 S= 54272
20 FORX= 15 TOOSTEP-1 Sets up volume loop
30 POKES + 24,X .. POKEs X to vol. register.
40 POKES + 4,129 .. Starts NOISE waveform
50 POKES + 5 ,15 .. Sets ATTACK/DECAY rate
60 POKES + 1,40 .. Sets high frequency
70 POKES,2 oo:NEXT Sets low frequency
80 POKES + 4 ,128 .. Stops NOISE waveform
90 POKES + 5 ,0 .. POKEs 0 to attack/decay
100 GOT020 Repeats program

The loop that begins in line 20 sets up fading volume so that the sound of the
gunshot starts at high volume (15) and fades to 0 as the loops executes.

Press the RUN/STOP key to end this program.
As we've said before, the best way to learn a new area of programming is to

experiment.

Filtering

Sometimes a certain waveform may not have quite the timbre you require. For
example, it would be difficult to imagine any of the preset waveforms in the SI D
chip sounding anything like a trumpet. To give you additional control over the
sound parameters, the SID chip is equipped with three FILTERS.

HIGH-PASS FILTER. This filter reduces the level of frequencies below the
specified cutoff frequency. It passes all the frequencies at or above the cutoff.
while cutting down the frequencies below the cutoff.

LOW-PASS FILTER. As its name implies. this filter passes the frequencies
below the cutoff and reduces the level of those above.

BAND-PASS FILTER. This filter passes a narrow band of frequencies around
the cutoff and cuts down the level of all others.

An extra filter. called the NOTCH REJECT FILTER can be synthesized by
combining the high and low pass filters. This passes frequencies away from the
cutoff while reducing the level at the cutoff frequency.

Register 24 determines which filter type you want to use. Remember that this
is also the register used for the volume control. The following bits are used for
filters:

BIT No.

4
5
6

USAGE

SELECT LOW-PASS FILTER
SELECT BAND-PASS FILTER
SELECT HIGH-PASS FILTER

1 00

A filter is activated by setting the relevant bit in register 2 4.
You may not wish to filter all voices at the same time. Register 23 determines

which voices are to be filtered. The bits are as follows:

BITHo.

7 -4
3
2
1
o

USAGE

FILTER RESONANCE 0 -15
FILTER EXTERNAL INPUT
FILTER VOICE 3
FILTER VOICE 2
FILTER VOICE 1

When a specific bit is set, the output of that voice will be diverted through the filter.
The cutoff frequency is an eleven bit number. The upper eight bits (11-3) are

stored in register 22 while the lower three bits (0 -2) are stored in register 2 1. This
gives you a range of values between 0 and 20 47 .

Try adding the following lines to the example program to filter the voice and
hear the difference in sound. We will be using a Low Pass filter which will allow
only the lower components of the sounds to be heard.

30 POKE S+2 4,31 :REM FULL VOLUME PLUS LOW PASS FILTER
35 POKE S + 23 ,1 :REM SELECT FILTER FOR VOICE 1
37 POKE S+22 ,128:POKE S+21 ,7 :REM SELECT CUTOFF FREQUENCY

Try experimenting with filters. Filtering a sound as it passes through the ADSR
phases of its life can produce interesting effects.

For further information on how to use the SID chip, consult the COMMODORE
6 4 Programmer's Reference Guide.

MUSIC COMPOSER

The Commodore MUSIC COMPOSER cartridge allows you to compose music
on your COMMODORE 64 without having to concern yourself with the workings
of the SID chip. Facilities are provided to allow you to type in program lines that
consist purely of special control characters. This enables you to play any
combination of sounds that you require using all the features of the SID chip.
Once you have composed your masterpiece, you can save it on tape and then
play it back at your leisure. While the music is playing, a music stave scrolls
across the screen displaying the notes as they are being played. This allows you
to get the most from the SID chip with the minimum of effort.

101

CHAPTER 9

ADVANCED DATA HANDLING

• READ and DATA Statements

• Calculating Averages

• Subscripted Variables

• Dimensioning Arrays

• Simulated Dice Roll with Arrays

• Two-dimensional Arrays

READ AND DATA STATEMENTS

SO far we've shown you how to assign values to variables directly (A = 2),
and how to assign values while the program is RUNning (INPUT and GET).

But often you'll find that neither way suits your needs for variable assign
ment in a program, especially when you have large amounts of data.

In the chapter 7 when we introduced sprites, we used READ and DATA
statements to assign values for sprites. Here's a short program that shows you
how these two statements work together:

10 READ X
20 PRINT "X IS NOW :";X
30 GOTO 10
40 DATA 1, 34,10.5,16,234.56

RUN

X IS NOW : 1
X IS NOW : 34
X IS NOW : 10.5
X IS NOW : 16
X IS NOW : 234.56

?OUT OF DATA ERROR IN 10
READY
•

104

Line 10 READs a value from the DATA statement at line 40 and assigns the
value to X.

Line 30 tells the computer to return to line 10, where the READ assigns the
next value in the DATA statement to X. The loop continues until all the DATA
values are read.

There are a few important rules you must remember when you use DATA
statements:

• Follow the DATA statement format precisely:

40 DATA 1, 34, 10.5, 16, 234.65

Comma separates each item

• Use:
- integer numbers (e.g., 34),
- real numbers (e.g., 234.65),
- numbers expressed in scientific notation (e.g., 2.4E + 04),
- words (as long as you use a string variable in the READ statement),
but DON'T use:
- variables or
- arithmetic operations
in DATA statements. The items listed below are treated as strings if you try
to READ them, and you can only READ them as strings with string variables
in the READ statement.

DATA A, 23/56, 2*5, B + 2

When you use a READ statement, you can only get values from a DATA state
ment because the two statements work as partners. Each time you READ a
value, the computer knows to move to the next value in the DATA statement. In
effect, there's a pOinter in the computer that keeps track of your place in the
DATA statement. After READing the first value, the DATA statement looks like
this:

40 DATA 1,34, 10.5, 16, 34.56
t.

pOinter

When the last DATA value has been assigned to the variable in the READ
statement and the computer tries to execute the loop again, the OUT OF DATA
ERROR is displayed.

Here's an example that shows one way to avoid the OUT OF DATA ERROR.

NEW

10 FOR X = 1 to 3
15 READ A$
20 PRINT "A$ IS NOW: "; A$
30 NEXT
40 DATA THIS, IS, FUN

RUN

A$ IS NOW: THIS
A$ IS NOW : IS
A$ IS NOW : FUN
READY

105

This time we put the READ statement inside a FOR/NEXT loop that limited
the number of READings to equal the numbers of items in the DATA statement.

As long as you know how many items will be in your DATA statements, this
method is fine. But often either you won't know or you won't want to bother to
count.

Sometimes the best way to avoid an OUT OF DATA ERROR is to end your
DATA statement with a FLAG. A flag is some value that would not ordinarily ap·
pear in your DATA list, such as a negative number, a very large number, a very
small number, or a special word, such as END or STOP. When you use a flag,
add an IFfTHEN statement to tell the computer to branch to another part of the
program when the flag is read. For example:

10 READ A
15 IF A < 0 THEN END
20 DATA 13, 35, 29, -999
25 PRINT "TOTAL = " ; A
30 GOTO 10

This program READs and PRINTs a value for A until it reaches - 999. Line 15
tells the computer to END the program immediately when a negative value is
read.

There is also a way to reuse the items in a DATA statement by RESTOREing
the data pOinter to the beginning of the DATA list. Try adding this line:

45 RESTORE
to the second program in this chapter and RUN it again. You'll see that the data
pOinter has been RESTOREd to the first item in the DATA list, and that you can
reREAD all the items.

CALCULATING AVERAGES

Here's a program that READs a set of numbers from a DATA list and
calculates their average. This program also uses a flag to tell the computer
when to stop READing DATA.

NEW

5 T = 0 : CT = 0
10 READ X
20 IF X = -1 THEN 50: REM CHECK FOR FLAG
25 CT = CT + 1
30 T = T + X : REM UPDATE TOTAL
40 GOTO 10
50 PRINT "THERE WERE " ; CT;" VALUES READ"
60 PRINT "TOTAL = " ;T
70 PRINT "AVERAGE = " ; T/CT
80 DATA 75, 80, 62, 91, 87, 93, 78, - 1

RUN
THERE WERE 7 VALUES READ
TOTAL = 566
AVERAGE = 80.8571429

106

Line 5 sets CT, the CounTer, and T, the Total, to zero.
Line 10 READs a value from the DATA list and assigns it to X.
Line 20 checks to see if the value read to X is our flag (-1). If it is, then the

program skips lines 25-40 and goes straight to line 50.
Line 25 adds one to CT, the counter, if the value of X is not the flag.
Line 30 adds X to T, the running total.
Line 40 sends the program back to repeat line 10.
Line 50, which isn't executed until line 10 READs the flag, PRINTs the

number of values read (Cn.
Line 60 PRINTs the total of the numbers read m.
Line 70 PRINTs the average.
You can also use more than one variable in the READ statement. You can mix

the types of DATA in a DATA list when you also mix the types of variables in the
READ statement. Here's a program that does just that. It READs a name and
some scores and then calculates the average of the scores.

NEW

10 READ N$,A,B,C
20 PRINT N$·"'S SCORES WERE· "A" " ·B·" " ·C
30 PRINT "AND THE AVERAGE IS:

'
''; iA +' s' + 6)/3

40 PRINT: GOTO 10
50 DATA MIKE, 190, 185, 165, DICK, 225, 245,190
60 DATA JOHN, 155, 185,205, PAUL, 160, 179, 187

RUN

MIKE'S SCORES WERE: 190 185 165
AND THE AVERAGE IS : 180

DICK'S SCORES WERE: 225 245 190
AND THE AVERAGE IS: 220

Line 10 READs a value for each of the variables. The DATA statement lists its
items in the same order that the READ statement expects to find them. In other
words, there's a name to go with the string variable, and numbers to go with the
integer variables.

107

SUBSCRIPTED VARIABLES

SO far we've only used simple BASIC variables such as X and X$. It's doubtful
that you'll write a program that requires more variable names than all the com
binations of letters and numbers available in BASIC, but you might want to be
able to group variable names together when you're using groups of data.

Subscripted variables let you use variable names so that they are obviously
grouped together. For example:

A (0), A (1), A (2), A (3)

The numbers in parentheses are the SUBSCRIPTS of variable A. Be aware
that the variable A1 does NOT equal the subscripted variable A (1).

You can use variables and arithmetic operation as subscripts. For example:
A (X) A (X+1) A (4-1) A (2 * X)
The expressions within the parentheses are evaluated according to the same

rules for arithmetic operations outlined in Chapter 3.
Subscripted variables, like simple variables, name a memory location within

the computer. But only subscripted variables name values that are organized in
to an ARRAY.

An ARRAY is understood by the computer to be a unit, such as a list or a
table, of related values.

The following example uses subscripted variables to calculate an average:

5 PRINT CHR$(147)
10 INPUT "HOW MANY NUMBERS :";X
20 FOR A = 1 TO X
30 PRINT "ENTER VALUE # ";A;:INPUT B(A)
40 NEXT
50 SU = 0
60 FOR A = 1 TO X
70 SU = SU + B(A)
80 NEXT
90 PRINT : PRINT "AVERAGE = "; SU/X

RUN

HOW MANY NUMBERS :? 5
ENTER VALUE # 1 ? 125
ENTER VALUE # 2 ? 167
ENTER VALUE # 3 ? 189
ENTER VALUE # 4 ? 167
ENTER VALUE # 5 ? 158

AVERAGE = 161.2

108

Line 5 clears the screen.
Line 10 asks you to enter the total number of items you'll INPUT at line 30.
Line 20 sets up a loop that makes A the subscript for the array B. The loop

adds 1 to A for every execution. This updates array B.
Line 30 prompts you to INPUT a value for the subscripted variable B (A).
Lines 50 through 80 keep a running total (SU) of the numbers INPUT.
Line 90 PRINTs the average.
Each time the INPUT loop executes, A is increased by 1, so the next value

entered is assigned to the r:lext element in array B. At the end of the program, ar
ray B looks like this:

B (1) 125
B (2) 167
B (3) 189
B (4) 167
B (5) 158

After you INPUT all the values, they are stored in array B. You can now ac
cess these values just by using the subscripted variables. For example, see
what happens when you add these lines:

100 PRINT B (X -1)
120 PRINT B (3)
130 PRINT B (X-3)

DIMENSIONING ARRAYS

If you try to enter more than ten numbers in an array, you'll get a DIMENSION
ERROR. Arrays of more then ten elements need to be predefined in a DIMEN
SION statement. For example, if you want an array to hold 25 values, you'd write
this statement in your program:

DIM B (25)
You can also use a variable in a DIMension statement. For example, in the

last program you could have used this statement since X equaled the total
number of values in array B:

15 DIM B (X)
But be careful when you use variables to define arrays: once an array is

DIMensioned, it can't be reDIMensioned in another part of the program. So
don't use a variable whose value will change in the program.

You can use more than one array in a program, and you can DIMension them
all on the same line:

10 DIM A (12), B (35), C (3,5)
Arrays A and B are one-dimensional arrays, but C is a two-dimensional array.

One-dimensional arrays just have ROWS of data, but two-dimensional arrays
have both rows and columns of data, just like a chart. Array C has 3 rows and 5
columns. Rows are always listed first in a DIMension statement.

109

SIMULATED DICE ROLL WITH ARRAYS

As you begin writing more complex programs, you'll find that subscripted
variables cut down on the number of statements and make programs simpler to
write.

For example, a single subscripted variable can keep track of the number of
times each face on a die turns up in a dice roll:

1 REM DICE SIMULATION : PRINT CHR$(147)
10 INPUT "HOW MANY ROLLS:";X
20 FOR L = 1 TO X
3 0 R = INT(6*RND(1))+ 1
40 F(R) = F(R) + 1
50 NEXT L
60 PRINT "FACE", "NUMBER OF TIMES"
70 FOR C = 1 TO 6 : PRINT C, F(C): NEXT

Line 10 asks you how many times you'll throw the dice iin the simulated roll.
Line 20 sets up a loop to count the number of dice rolls so that the program

ends on the Xth roll.
Line 30 makes R equal to the random number rolled.
Line 40 sets up the array F, for FACE, which keeps track of how many times

each face turns up. Whatever value R acquires in the dice roll becomes the
subscript for the array, and line 40 adds one to the appropriate array variable.
For example, every time a 2 is thrown, F (2) is increased by one.

Line 70 PRINTs the number of times each face shows up. Here's a sample
RUN:

HOW MANY ROLLS: ?
FACE
1
2
3
4
5
6

1 ()()()
NUMBER OF TIMES
148
176
178
166
163
169

110

Now we'll show you how much longer your program would be if you didn't
use an array:

10 INPUT "HOW MANY ROLLS:"; X
20 FOR L = 1 TO X
30 R = INT(6*RND(1))+ 1
40 IF R = 1 THEN F1 = F1 + 1 : NEXT
41 IF R = 2 THEN F2 = F2 + 1 : NEXT
42 IF R = 3 THEN F3 = F3 + 1 : NEXT
43 IF R = 4 THEN F4 = F4 + 1 : NEXT
44 IF R = 5 THEN F5 = F5 + 1 : NEXT
45 IF R = 6 THEN F6 = F6 + 1 : NEXT
60 PRINT "FACE", "NUMBER OF TIMES"
70 PRINT 1, F1
71 PRINT 2, F2
72 PRINT 3, F3
73 PRINT 4, F4
74 PRINT 5, F5
75 PRINT 6, F6
As you can see, the program has twice as many lines. The longer the pro

gram, the more space and time you can save when you use arrays.

111

TWO·DIMENSIONAL ARRAYS

As we mentioned before, two-dimensional arrays have both rows and
columns, like a chart or a table. Two-dimensional arrays have two subscripts:
the first one is for the ROW number; the second is for the COLUMN number.
For example:

A (4,6) has 4 ROWS
and 6 COLUMNS

Here's what array A would look like as a two·dimensional grid in memory:

o 2 3 4 5 6

o

2

3

4

You'll notice that there's a zeroth row and column, so when you DIMension A
(4,6), you're creating an array with 5 rows and 7 columns, or 35 elements.

You can access any element of a two-dimensional array by using its row and
column subscripts. For example, suppose you want to assign 255 to A (3,4):

o

2

3

4

10 LET A(3,4) = 255

Here's what the grid looks like now:

o 2 3 4 5 6

255

Two·dimensional arrays follow the same rules as one-dimensional arrays:

DIMensioning:
Assigning data values:
Assigning values to

other values:
PRINTing values:

DIM A (20,20)
A(1,1) = 255

AS = A(1,1)
PRINT A(1,1)

112

Here's an example of how two-dimensional arrays can be used. This example
keeps track of responses to a club questionnaire like this:

CLUB QUESTIONNAIRE

Q1: ARE YOU IN FAVOR OF RESOLUTION #1?

1 - YES 2 - NO 3 - UNDECIDED

Let's suppose there are four questions, so the array, which we'll call A, will be
DIMensioned A(4,3). Here's how the array table looks:

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

YES NO UNDECIDED

The program that keeps track of the responses is on the next page. This pro
gram uses many of the programming techniques that have been presented so
far.

Lines 30'{)S PRINT the questions in numerical order and ask you to INPUT the
response.

Line 70 adds one to the appropriate array element. Remember that R is the
question number, and the questions are in rows. C is the response number, and
the responses are in columns.

Line 90 asks if you have another set of responses to INPUT.
Lines 110 and 120 tell the program where to go, depending on your response

to line 90.
Lines 130-170 PRINT the total number of each response.
Each time you INPUT a response at line 61, line 70 updates the right element

of the array. Recall the R is the question number and C is the response number,
so if your response to question 2 is 3 (undecided), line 70 adds one to array ele
ment A(2,3).

You'll notice that we didn't use the zeroth row and column in this example.
You don't have to use this row and column, but remember that they are always
present in every array you use.

113

20 PRINT "(SHIFT/CLR/HOME)"
30 FOR R = 1 TO 4
40 PRINT "QUESTION # : "; R
50 PRINT " 1-YES 2-NO 3-UNDECIDED"
60 PRINT "WHAT WAS THE RESPONSE: ";
61 GET C : IF C <1 or C> 3 THEN 61
65 PRINT C: PRINT
70 A(R,C) = A(R,C) + 1 : REM UPDATE ELEMENT

80 NEXT R
85 PRINT
90 PRINT "DO YOU WANT TO ENTER ANOTHER": PRINT

"RESPONSE (YIN)";
100 GET A$: IF A$ = " " THEN 100
110 IF A$ = "Y" THEN 20
120 IF A$ <> "N" THEN 100
130 PRINT" (SHIFT/CLR/HOME) ";"THE TOTAL RESPONSES

WERE:":PRINT
140 PRINT SPC(18);"RESPONSE"
141 PRINT "QUESTION" ,"YES" ,"NO" ,"UNDECIDED"
142 PRINT ,,-------- ----------------------------"
150 FOR R = 1 TO 4
160 PRINT R, A(R,1), A(R,2), A(R,3)
170 NEXT R
RUN

QUESTION # : 1
1-YES 2-NO 3-UNDECIDED
WHAT WAS THE RESPONSE: 1

QUESTION # : 2
1-YES 2-NO 3-UNDECIDED
WHAT WAS THE RESPONSE: 1

And so on . . .

THE TOTAL RESPONSES WERE:

QUESTION YES

1 6
2 5
3 7
4 2

RESPONSE
NO

1
2
0
4

114

UNDECIDED

0
0
0
1

APPEN DICES

INTRO DUCTION

Now that you've gotten to know your 64, we want you to know that our
customer support does not stop here. You may not know it, but Commodore
has been in business for over 23 ye�rs. In the 1 970's we introduced the first self
contained personal computer (the PET). We have since become the leading
computer company in many countries of the world. Our ability to design and
manufacture our own computer chips lets us bring you new and better personal
computers at prices way below what you'd expect for this level of technical
excellence.

Commodore is committed to supporting you, the end user. We also assist
you by supporting the dealer who sold you your computer, magazines that
publish hbw-to articles showing you new applications or techniques, and soft
ware developers who produce programs on cartridge and disk for use with your
computer. We encourage you to establish or join a Commodore "user club"
where you can learn new techniques, exchange ideas and share discoveries.
We publish two separate magazines which contain programming tips, informa
tion on new products and ideas for computer applications. (See Appendix N).

In North America, Commodore provides a "Commodore Information Net
work" on the CompuServe Information Service. To use this network, all you
need is your 64 computer and our low cost VICMODEM telephone interface cart
ridge (or other compatible modem).

The following APPENDICES contain charts, tables, and other information
which help you program your COMMODORE 64 faster and more efficiently. They
also include important information on the wide variety of Commodore products
you may be interested in, and a bibliography listing of over 20 books and
magazines which can help you develop your programming skills and keep you
current on the latest information concerning your computer and peripherals.

1 1 6

APPENDIX A
EXPANDING YOUR COMMODORE 64 COMPUTER SYSTEM

The 64 is an extremely powerful computer and one that can be used in a wide
variety of applications from word-processing to data base management.

The basic 64 computer system consists of the computer, a suitable television
set or monitor and a cassette unit on which to store your programs. For some
applications, the cassette unit can be somewhat slow. This limitation can be
overcome by using a disk unit to save and recall your programs.

Why Use a Disk Drive?

If your programs or data files are very small, storing information on cassette
tape will not cause any great inconvenience. However, there will come a time
when the effective use of your system is restricted by the time it takes to load from
and/or save to tape. This is when you should be thinking about using a
Commodore disk unit.

THE VIC 1 541 DISK DRIVE

The VIC 1 541 disk drive allows you to store up to 144 programs or data files on
a standard 51/4 inch diskette. When using a disk drive, you no longer have to think
about re-winding tapes or worry about overwriting existing information. The
1 541 disk unit is an 'intelligent device', i.e. it does its own processing without
having to use any of the memory resources of the COMMODORE 64. Over
1 74000 characters of information can be stored on each diskette - the size of an
average Dickens' novel! The main advantage of a disk drive over a cassette unit
is speed. An operation on a disk drive is typically up to 40 times faster than the
same operation on cassette. The VIC 1 541 disk unit requires no special interface
- it plugs directly to your COMMODORE 64.

You are not restricted to using one disk drive. By connecting the units together
(called 'daisy-chaining') as many as five disk drives can be used with one
COMMODORE 64 so that you can load and save programs and files without
having to change diskettes.

VIC 1 525 DOT MATRIX PRINTER

A printer adds a great deal of versatility to your computer system. No computer
system is complete without one. It allows you to produce invoices, send letters,
or print out program listings so that you can examine your code away from the
computer. The VIC 1525 is a 'dot matrix' printer. This means that each character
is made up from a pattern of dots in a grid. You can print all the characters on your
COMMODORE 64 keyboard or print characters you have designed yourself. The
VIC 1525 prints at a speed of 30 characters/second at 12 characters/inch on
plain tractor-feed paper up to 10 inches wide. The printer plugs directly into your
COMMODORE 64 and requires no additional interface.

VIC 1 526 BI-DIRECTIONAL DOT MATRIX PRINTER

The VIC 1526 printer differs from the VIC 1525 in two important respects. First,
it is a bi-directional printer. This means that the machine prints from right to left
as well as the conventional left to right. This means that the machine doesn't
waste time sending the printer head to the left edge of the paper every time a new
line of text is to be printed.

117

The second main difference between the 1 526 and 1 525 is in speed of
operation. The time taken to print each line is directly proportional to the width of
page you have set up. On an 80 column wide print out, the speed is 45 lines/
minute; on 40 columns, 78 lines/minute, and on 20 column wide paper, 1 24
lines/minute. The 1 526 allows you to print up to 3 copies of your output including
the original. It has a cartridge ribbon for ease of interchange and accepts paper
up to 1 0 inches wide. The 1 526 plugs directly to your COMMODORE 64 - no
special interface is required.

VIC 1 520 PRINTER/PLOnER

The VIC 1 520 can be used both as a standard printer or as a plotter to allow
you to design and draw graphs, histograms, pie charts - in fact any shape you
like in a combination of four colors. You can print upper case/lower case letters
and graphics symbols. A further facility offered by the printer allows you to define
the size of each character you display. The printer prints at 1 4 characters/
second. Depending on the size of character selected, between 1 0 and 40
characters can be printed on each line of the paper. Characters can even be
printed . sideways , by rotating them 90 degrees. Shapes are drawn by simply
telling the printer/plotter where the start and end co-ordinates or the shape are
to be on the paper and what type of line you wish to use. These range from solid
lines to coarse, broken lines. The plotter is accurate to 0.2 of a mm and has a
plotting speed of 60 mm/sec. The plotter uses small ball-point pens each of
which is user-selectable when plotting. The printer/plotter plugs directly into
your COMMODORE 64 and requires no additional interface.

1 701 COLOR MONITOR

A computer with the versatility of the COMMODORE 64 needs a medium on
which to demonstrate its capabilities to the full. The 1 701 color monitor has been
designed specifically for this purpose. The monitor has a 1 4 inch screen with
outstanding resolution. Sound can be generated either from the monitor's
internal speaker or, via a simple connection, from your Hi-Fi system.

1 3 1 1 JOYSTICK

A joystick can be used not only as a games controller but also, with suitable
software, as a tool for drawing and plotting. The COMMODORE 64
Programmer's Reference Guide gives detailed information on how to
incorporate the use of a joystick in your programs.

1 1 8

S OFTWARE

A wide variety of software is available for the COMMODORE 64 covering
applications in the home, at work, entertainment and aids for the programmer.

Software for Business and the Home

EASYFILE EFI 6440 (diskette)

EASYFILE is a comprehensive data-base system for the COMMODORE 64. It
includes all the features of similar, highly-priced packages at a fraction of the
cost. The user decides how he wishes his information to appear when it is printed
out either on the screen or the printer. This means that EASYFILE can be tailored
to suit the needs of a wide variety of applications either in business or in the
home.

CLUB MANAGER CMG 6440 (diskette)

CLUB MANAGER has been designed to aid in the smooth running of sports
clubs, social clubs, associations - in fact any organization that needs to
maintain accurate membership records. The package allows you to record the
details of all the members of your club on diskette, much as records are stored
within a filing cabinet. Membership details can be amended where necessary
and records can be added to or deleted from the membership file. CLUB
MANAGER enables you to produce membership lists, subscription reminders,
address labels, and, because the package can be linked to the EASY SCRIPT
word processor, personalized copies of standard letters. CLUB MANAGER also
has a booking facility allowing you to enter details of when members wish to use
squash courts, tennis courts, snooker tables, restaurant tables, dance tickets or
any similar club facility or activity. Overbooking is now a thing of the past. CLUB
MANAGER allows you to maintain a diary and use it to record/amend details of
appointments, meetings, etc. CLUB MANAGER is an ideal tool for the club
owner or club secretary and will greatly reduce the amount of time spent on
maintaining membership records and booking club facilities.

FUTURE FINANCE FFI 6440 (diskette)

FUTURE FINANCE is a low-cost, financial planning package. It enables you to
predict your company's profit and cash-flow position based on expected
production, sales and costs. Details can be altered to view the effect of these
changes on the company's overall performance. Reports can be produced
showing the contribution to profits made by each product and the cash-flow
position at the end of each user-defined period.

EASYCALC ECL 6440 (diskette)

EASY CALC is an electronic spreadsheet package. It contains all the
traditional spreadsheet features - user-defined sheet size, replication of
information from one area of the sheet to the other etc. Allied to these facilities,
EASYCALC includes many other features including a library of trigonometrical,
statistical and other advanced mathematical functions, the ability to draw graphs
in a specific area of the sheet, data protection via a password option and much,
much more.

1 1 9

EASY STOCK EST 6440 (diskette)

EASY STOCK is a powerful inventory system containing a wide range of
stock-recording and reporting features. The details of each stock item are
entered directly from the keyboard onto the screen and then stored on diskette.
EASY STOCK also allows you to change the price of an individual item or a range
of products on the stock file. Each stock record is accessed by simply typing in
the reference/part number of that item. Records can be amended, added to you r
stock file or deleted from it. If the amount of stock on hand falls below your
specified minimum level, the stock figure is highlighted when the record is
accessed. EASY STOCK allows you to produce a wide range of reports including
stock levels, analysis of stock movements, sales/stock valuation analyses and
much more.

EASY SCRIPT ESC 6440 (diskette)

EASY SCRIPT is a professional, low cost, word-processing package. It
enables you to create, modify and print text quickly and easily. EASY SCRIPT
can be used for writing letters, reports, memos, book manuscripts - in fact any
kind of document. Text can be stored on diskette or cassette so that it may be
printed or modified as required.

iI'
EASY SPELL ESP 6440 (diskette)

EASY SPELL is a spelling checker for files produced by the EASY SCRIPT
word processing package. It can be used to check text in individual EASY
SCRIPT files or text that is spread over files that have been linked together. The
EASY SPELL package comes complete with a dictionary diskette against which
the spelling of text is checked.

Aids for the Programmer

To assist in the development of your own software, Commodore has
introduced a range of programming utilities. These will help speed the entry and
debugging of BASIC and machine code programs.

SIMONS' BASIC SIB 641 0 (cartridge)

SIMONS' BASIC has been designed to enable programmers of all levels to
easily utilise the potential of their COMMODORE 64. The SIMONS' BASIC
cartridge is really three packages in one. It contains a Toolkit to remove the
tedious aspects of computer programming, a vast range of commands to
facilitate the use of graphics and sound on the 64 and Structured Programming
commands to help the programmer write more meaningful code. The package is
supplied in cartridge form which means that you can use all its features by simply
inserting it into the slot at the rear of the COMMODORE 64 and turning the
computer on - it's as simple as that. You then use the additional SIMONS'
BASIC commands just as you would any other BASIC commands.

Toolkit commands include:

• AUTO - for automatic line numbering
• RENUMBER - for automatic program re-numbering
• KEY - to assign commands to the function keys

and many more.

1 20

Graphics commands include:

• HIRES - to put the screen into high-resolution mode
• REC - to draw a rectangular shape
• CIRCLE - to draw a circular shape
• PAINT - to fill a shape with color

plus commands for creating sprites and user-defined graphics:

• DESIGN - to set up a design grid for a sprite or user-defined character
• MMOB - to move a sprite
• DETECT - to detect sprite collision

and much, much more.

The Structured-Programming commands supplied by the SIMONS' BASIC
cartridge are a boon to programmers of all levels of ability. It is now possible to
label BASIC routines and call these routines by name. Other structured
programming commands include:

• PROC - to label BASIC routines
• CALL - to pass execution to a routine
• EXEC - to pass execution to a routine and return from it when

the routine has been completed
• REPEAT ... UNTIL - to repeat a loop dependent on a condition test

and many others.

SIMONS' BASIC also includes commands for screen formatting, scrolling the
screen, input validation, character string manipulation, hexadecimal to decimal
and binary to decimal conversion, integer division and much, much more. The
cartridge also has a group of commands which allow you to trap certain BASIC
errors. You can even generate your own error messages! The range of
commands supplied by the SIMONS' BASIC cartridge make it an essential tool
for any programmer who wants to easily utilise the special features of his
COMMODORE 64.

Works with cassette or diskette.

ASSEMBLER TUTOR AST 6440 (diskette) AST 6420 (cassette)

The ASSEMBLER TUTOR package is a must for all would-be machine code
programmers. It can also be valuable to those programmers who already know
something about assembly language programming but wish to expand their
knowledge of 6502 machine code. The ASSEMBLER TUTOR is divided into
three modules. Each module covers one aspect of assembly-language
programming and contains an introduction, a self-test and discussion of various
aspects of assembly-language programming.

ASSEMBLER DEVELOPMENT ASM 6440 (diskette)

The ASSEMBLER DEVELOPMENT package allows you to program in
assembler directly onto your COMMODORE 64. It provides all the tools the
assembler programmer needs to create, assemble load and execute 6510
assembly language code.

121

PROGRAMMER'S UTILITIES UTL 6440 (diskette)

The PROGRAMMER'S UTILITIES package contains many useful routines to
help both the new and experienced programmer to get the most from his
COMMODORE 64. These include Disk-Handling routines for changing the
device number of a disk drive and copying disks using a single disk drive,
graphics utilities such as a sprite and character editor, sound commands and
BASIC proqramming aids for easier screen formatting and control operations.

ENTERTAINMENT

As well as a wide range of top quality arcade-style games for the COMMODOR E
64, Commodore have also produced a range of Business Simulation programs
for those who prefer to exercise their brain rather than their joystick fire button
finger. In these games, time is no restriction, only your capabilities to work out
complex scenarios.

LABYRINTH LBY 6420 (cassette)

Dare you enter the twisting Elizabethan maze? Will you ever get out, or will you
be trapped forever? LOST? Well you can take a quick peek at where you are but
remember that this reduces your score. Certainly a game to lose yourself in.

HIGH FLYER HFL 6440 (diskette)

It's 1945. The War has just ended and you have decided to run your own
airline. By making careful management decisions, you have to guide the
enterprise from 1945 up to the present day. The decisions are all yours - plane
schedules and routes; what is the best cargo/passenger ratio to maximise profit;
when is the best time to extend your fleet, make improvements to existing stock,
I::nhance support services; whether or not you need to borrow money from the
hank and which banks can offer you the best deal etc. You can save the position
you have reached until the next time you wish to join the high-flyers.

Available on diskette only.

RAIL BOSS RBO 6440 (diskette)

You are a pioneer railwayman in charge of building a line in the American West
between Base City and Junction City. It's your job to hire and fire surveyors,
workers and guards to protect you and your workforce against marauding
bandits. By building stations along the route, you can generate income to pay
your

'
workforce and buy additional stock should you require it. To thwart your

efforts, warlike Indians try to disrupt your work by killing members of the
workforce and ripping up the track. Your only hope is that the cavalry from Fort
Commodore can get to the Indians before they get to you. A game for budding
pioneersmen everywhere.

122

OCEAN RACER OCR 6440 (diskette)

You have entered the round-the-world yacht race. The race starts from
Portsmouth and goes via Cape Town South Africa, Auckland New Zealand, Rio
de Janeiro in Brazil and, finally, back to Portsmouth. You choose the type of ship
you wish to captain: a single-masted cutter/sloop; a twin-masted ketch or a
single-masted multi-hull boat. The race is in four stages, each of which contains
various hazards ranging from icebergs to boat damage caused by passing
whales! You decide which route to sail and how much sail to select for the
prevailing wind conditions. A game for old salts and aspiring mariners alike.

These are just the first of a series of thinking games especially designed for the
COMMODORE 64. More are being developed all the time. For details of release
dates, please keep in close touch with your local Commodore stockist.

123

APPEN DIX B
DESCRIPTION O F DOS ERROR M ESSAGES

NOTE: Error message numbers less than 20 should be ignored with the excep
tion of 01 which gives information about the number of files scratched with the
SCRATCH command.

20: READ ERROR (block header not found)
The disk controller is unable to locate the header of the requested data
block. Caused by an illegal sector number, or the header has been
destroyed.

21 : READ ERROR (no sync character)
The disk controller is unable to detect a sync mark on the desired track.
Caused by misalignment of the read/writer head, no diskette is present, or
unformatted or improperly seated diskette. Can also indicate a hardware
failure.

22: READ ERROR (data block not present)
The disk controller has been requested to read or verify a data block that
was not properly written. This error message occurs in conjunction with
the BLOCK commands and indicates an illegal track and/or sector re
quest.

23: READ ERROR (checksum error in data block)
This error message indicates that there is an error in one or more of the
data bytes. The data has been read into the DOS memory, but the
checksum over the data is in error. This message may also indicate
grounding problems.

24: READ ERROR (byte decoding error)
The data or header as been read into the DOS memory, but a hardware er
ror has been created due to an invalid bit pattern in the data byte. This
message may also indicate grounding problems.

25: WRITE ERROR (write-verify error)
This message is generated if the controller detects a mismatch between
the written data and the data in the DOS memory.

26: WRITE PROTECT ON
This message is generated when the controller has been requested to
write a data block while the write protect switch is depressed. Typically,
this is caused by using a diskette with a write a protect tab over the
notch.

27: READ ERROR (checksum error in header)
The controller has detected an error in the header of the requested data
block. The block has not been read into the DOS memory. This message
may also indicate grounding problems.

124

28: WRITE ERROR (long data block)
The controller attempts to detect the sync mark of the next header after
writing a data block. If the sync mark does not appear within a pre
determined time, the error message is generated. The error is caused by a
bad diskette format (the data extends into the next block), or by hardware
failure.

29: DISK 10 MISMATCH
This message is generated when the controller has been requested to ac
cess a diskette which has not been initialized. The message can also oc
cur if a diskette has a bad header.

30: SYNTAX ERROR (general syntax)
The DOS cannot interpret the command sent to the command channel.
Typically, this is caused by an illegal number of file names, or patterns are
illegally used. For example, two file names may appear on the left side of
the COpy command.

31: SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The command must start in
the first position.

32: SYNTAX ERROR (invalid command)
The command sent is longer than 58 characters.

33: SYNTAX ERROR (invalid file name)
Pattern matching is invalidly used in the OPEN or SAVE command.

34: SYNTAX ERROR (no file given)
The file name was left out of a command or the DOS does not recognize it
as such. Typically, a colon (:) has been left out of the command.

39 SYNTAX ERROR (invalid command)
This error may result if the command sent to command channel (secon
dary address 1 5) is unrecognized by the DOS.

50: RECORD NOT PRESENT
Result of disk reading past the last record through INPUT#, or GET# com
mands. This message will also occur after positioning to a record beyond
end of file in a relative file. If the intent is to expand the file by adding the
new record (with a PRINT# command), the error message may be ignored.
INPUT or GET should not be attempted after this error is detected without
first repositioning.

51 : OVERFLOW IN RECORD
PRINT# statement exceeds record boundary. Information is truncated.
Since the carriage return which is sent as a record terminator is counted
in the record size, this message will occur if the total characters in the
record (including the final carriage return) exceeds the defined size.

52: FILE TOO LARGE
Record position within a relative file indicates that disk overflow will
result.

1 25

60: WRITE FILE OPEN
This message is generated when a write file that has not been closed is
being opened for reading.

61 : FILE NOT OPEN
This message is generated when a file is being accessed that has not
been opened in the DOS. Sometimes, in this case, a message is not
generated; the request is simply ignored.

62: FILE NOT FOUND
The requested file does not exist on the indicated drive.

63: FILE EXISTS
The file name of the file being created already exists on the diskette.

64: FILE TYPE MISMATCH
The file type does not match the file type in the directory entry for the reo
quested file.

65: NO BLOCK
This message occurs in conjunction with the B-A command. It indicates
that the block to be allocated has been previously allocated. The
parameters indicate the track and sector available with the next highest
number. If the parameters are zero (0), then all blocks higher in number
are in use.

66: ILLEGAL TRACK AND SECTOR
The DOS has attempted to access a track or block which does not exist in
the format being used. This may indicate a problem reading the pOinter to
the next block.

67: ILLEGAL SYSTEM T OR S
This special error message indicates an illegal system track or sector.

70: NO CHANNEL (available)
The requested channel is not available, or all channels are in use. A max
imum of five sequential files may be opened at one time to the DOS.
Direct access channels may have six opened files.

71 : DIRECTORY ERROR
The BAM does not match the internal count. There is a problem in the
BAM allocation or the BAM has been overwritten in DOS memory. To cor
rect this problem, reinitialize the diskette to restore the BAM in memory.
Some active files may be terminated by the corrective action. NOTE:
BAM = Block Availability Map

72: DISK FULL
Either the blocks on the diskette are used or the directory is at its entry
limit. DISK FULL is sent when two blocks are available on the 1541 to
allow the current file to be closed.

126

73: DOS MISMATCH (73, CBM DOS V2.6 1 541)
DOS 1 and 2 are read compatible but not write compatible. Disks may be
interchangeably read with either DOS, but a disk formatted on one ver
sion cannot be written upon with the other version because the format is
different. This error is displayed whenever an attempt is made to write
upon a disk which has been formatted in a non-compatible format. (A uti l i
ty routine is available to assist in converting from one format to another.)
This message may also appear after power up.

74: DRIVE NOT READY
An attempt has been made to access the 1 541 single Drive Floppy Disk
without any diskettes present in either drive.

1 27

APPENDIX C
COMMODORE 64 BASIC

This manual has g iven you an introduction to the BASIC languge - enough
for you to get a feel for computer programming and some of the vocabulary in·
volverl. This appendix g ives a complete l ist of the rules (SYNTAX) of 64 BASIC,
along with concise descriptions. Please experiment with these commands.
Remember, you can't damage the computer by just typing in programs, and the
best way to learn computing is by experimenting.

This appendix is d ivided into sections according to the different types of
operations i n BASIC. These include:

1. Variables and Operators: describes the different type of variables, legal
variable names, and arithmetic and logical operators.

2. Commands: describes the commands used to work with programs, such as
ed iting, storing, and erasing.

3. Statements: describes the BASIC program statements used in numbered
l i nes of programs.

4. Functions: describes the string, numeric, and print functions.

VARIABLES

The 64 uses three types of variables in BASIC. These are real numeric, i n·
teger numeric, and string (alphanumeric) variables.

Variable names may consist of a single letter, a letter fol lowed by a number,
or two letters.

An integer variable is specified by using the percent (%) sign after the
variable name. String variables have the dol lar sign ($) after their name.

EXA MPLES

Real Variable Names: A, A5, BZ
Integer Variable Names: A%, A5%, BZ%
String Variable Names: A$, A5$, BZ$
ARRAYS are l ists of variables with the same name, using numbers cal led

subscripts to specify the element of the array. Arrays are defi ned using the DIM
statement, and may contain floating point, integer, or string variables. The array
variable name is fol lowed by a set of parentheses () enclosing the number of
variables in the l ist.

A(7), BZ%(1 1), A$(50), PT(20,20)

NOTE: There are three variable names which are reserved for use by the 64,
and may not be defined by you. These variables are: ST, TI, and TI$. ST is a
status variable which relates to input/output operations. The value of ST wi l l
change if there is a problem load ing a program from d isk or tape.

TI and TI$ are variables which relate to the real·time clock bu i lt i nto the 64.
The variable TI is updated every 1 /60th of a second. It starts at 0 when the com·
puter is turned on, and is reset only by chang ing the value of TI$.

1 28

TI$ is a string which is constantly updated by the system. The first two
characters contain the number of hours, the 3rd and 4th characters the number
of minutes, and the 5th and 6th characters are the number of seconds. This
variable can be given any numeric value, and wil l be updated from that point.

TI$ = " 101 530" sets the clock to 10 : 15 and 30 seconds AM.

This clock is erased when the computer is turned off, and starts at zero when
the system is turned back on.

OPERATORS

The arithmetic operators include the fol lowing signs:

+ Addit ion
- Subtraction

Mult ip l ication
I Division
, Raising to a power (exponentiation)

On a l i ne contain ing more than one operator, there is a set order in which
operations always occur. I f several operations are used together on the same
l ine, the computer assigns priorities as fol lows: First, exponentiation. Next,
mult ip l ication and d ivision, and last, addit ion and subtraction.

You can change the order of operations by enclosing within parentheses the
calcu lation to be performed f irst. Operations enclosed in parentheses wi l l take
place before other operations.

There are also operations for equal it ies and inequal it ies:

= Equal To
< Less Than
> Greater Than
< = Less Than or Equal To
>= Greater Than or Equal To
< /' Not Equal To

Finally, there are three logical operators:

AND
OR
NOT

These are used most often to joi n mult iple formulas in IF . . . THEN
statements. For example:

IF A = B AND C = D THEN 1 00 (Requires both parts to be true)

I F A = B OR C = D THEN 1 00 (Al lows either part to be true)

COMMANDS

CO NT (Continue)

This command is used to restart the execution of a program which has been
stopped by either using the STOP key (but not STOP & RESTORE), a STOP
statement, or an END statement within the program. The program wil l restart at
the exact place from where it left off.

1 29

CONT wil l not work if you have changed or added l ines to the program, or if the
program halted due to an error, or if you caused an error before trying to restart
the program. In these cases you wil l get a CAN'T CONTI NUE ERROR.

LIST

The LIST command allows you to look at l i nes of a B . ASIC program in
memory. You can ask for the entire program to be d isplayed, or only certain l ine
numbers.

LIST
LIST 1 0 -
LIST 1 0
LIST - 1 0
LIST 1 0-20

LOAD

Shows enti re program
Shows only from l ine 10 unt i l end
Shows only l i ne 1 0
Shows l ines from beginn ing until 1 0
Shows line from 1 0 t o 20, inclusive

Th is command is used to transfer a program from tape or disk into memory so
the program can be used . If you just type LOAD and hit R ETURN, the first
program found on the cassette unit will be placed in memory. The command may
be fol lowed by a program name enclosed with in quotes. The name may then be
followed by a comma and a number or numeric variable, which acts as a device
number to indicate where the program is coming from.

If no device number is given, the COMMODOR E 64 assumes device #1 ,
which is the cassette unit. The other· device commonly used with the LOAD
command is the disk drive, which is device #8.

LOAD
LOAD "HELLO"

LOAD A$
LOAD "HELLO",8
LOAD "*",8

Reads in the next program on tape
Searches tape for program called H ELLO, and loads

program if found
Looks for program whose name is in the variable A$
Looks for program called H ELLO on the disk drive
Looks for first program on disk

A secondary address of 1 must be specified if you want to load a machine code
program without relocating it.

LOAD "M/C PROGRAM",1 , 1 Loads mach ine code from tape without
relocating

1 30

NEW

This command erases the entire program i n memory, and also clears out any
variables that may have been used. Unless the program was SAVEd, it is lost.
BE CAREFUL WHEN YOU USE THIS COMMAND.

The N EW command can also be used as a BASIC program statement. When
the program reaches this l ine, the program is erased. This is useful i f you want
to leave everyth ing neat when the program is done.

RUN

This command causes execution of a program, once the program is loaded
i nto memory. If there is no l i ne number following RUN, the computer w i l l start
with the lowest l i ne number. If a l i ne number is designated, the program wi l l
start executing from the specif ied l i ne.

RUN
RUN 1 00
RUN X

Starts program at lowest l ine number
Starts execution at l ine 1 00
UNDEFI N ED STATEM ENT ERROR. You must always specify
an actual l i ne number, not a variable representation

SAVE

This command will store the program currently in memory on cassette or d isk.
If you just type SAVE and RETURN, the program wil l be SAVEd on cassette. The
computer has no way of knowing if there is a program already on that tape, so be
careful with your tapes or you may erase a valuable program.

If you type SAVE fol lowed by a name in quotes or a string variable, the
computer wi l l g ive the program that name, so it can be more easily located and
retrieved in the future. The name may also be followed by a device number.

After the device number, there can be a comma and a second number, either 0
or 1. If the second number is 1, the COMMODORE 64 wi l l put an END-OF-TAPE
marker after your program. This signals the computer not to look any further on
the tape if you were to give an additional LOAD command. If you try to LOAD a
program and the computer finds one of these markers, you wi l l get a FILE NOT
FOUND ERROR.

SAVE
SAVE "HELLO"
SAVE A$
SAVE "HELLO",8
SAVE "HELLO", 1 ,1

SAVE "HELLO",1 ,2

Stores program to tape without name
Stores on tape with name HELLO
Stores on tape with name in A$
Stores on d isk with name HELLO
Stores on tape with n ame H E LLO and reloads in same

posit ion of memory
Stores i n tape with name H ELLO and fol lows program

with END-OF-TAPE marker
SAVE "HELLO",1 ,3 As above but reloads in same posit ion in memory

131

VERIFY

This command causes the computer to check the program on disk or tape
against the one in memory. This is proof that the program is actually SAVEd, in
case the tape or disk is bad, or something went wrong during the SAVE. VERIFY
without anything after the command causes the COMMODORE 64 to check the
next program on tape, regardless of name, against the program in memory.

VERIFY followed by a program name, or a string variable, wi l l search for that
program and then check. Device numbers can also be included with the verify
command.

VERIFY Check the next program on tape
VERIFY "HELLO" Searches for HELLO, checks against memory
VERIFY "HELLO",8 Searches for HELLO on disk, then checks

To check if a program is already on a tape, just VERIFY and the computer wil l
say which program it has found (if any).

STATEMENTS

CLOSE

This command completes and closes any fi les used by OPEN statements.
The number fol lowing CLOSE is the f i le number to be closed.

CLOSE 2 Only f i le #2 is closed

CLR

This command wil l erase any variables in memory, but leaves the program
itself intact. This command is automatical ly executed when a RUN command is
given.

CMD

CMD sends the output which normally would go to the screen (i .e. , PRINT
statements, LISTs, but not POKEs onto the screen) to another device instead .
This could be a printer, or a data fi le on d isk. This device or f i le must be OPEN·
ed f i rst. The CMD command must be fol lowed by a number or numeric variable
referring to the fi le.

OPEN 1 ,4
CMD 1
L IST

OPENs device #4, which is the printer
Al l normal output now goes to printer
The program l ist ing now goes to the printer, not the
screen

To send output back to the screen, CLOSE the fi le with CLOSE 1 .

1 32

DATA

This statement is followed by a l ist of items to be used by READ statements.
Items may be numeric values or test strings, and items are separated by com
mas. String items need not be i nside quote marks u nless they contain space,
colon, or comma. If two commas have nothing between them, the value wi l l be
READ as a zero for a number, or an empty string.

DATA 1 2, 1 4.5, "HELLO, MOM", 3.1 4, PART1

DEF FN

This command allows you to define a complex calculation as a function with
a short name. In the case of a long formula that is used many times within the
program, this can save time and space.

The function name wil l be FN and any legal variable name (1 or 2 characters
long). First you must def ine the function using the statement DEF fol lowed by
the function name. Following the name is a set of parentheses enclosing a
numeric variable. Then follows the actual formula that you want to define, with
the variable in the proper spot. You can then "call" the formula, substituting any
number for the variable.

10 DEF FNA(X) = 1 2*(34.75 - XI.3)
20 PRINT FNA(i J 7 is inserted where

X is in the fonnula

For this example, the result woud be 1 37.

DIM

When you use more than 1 1 elements of an array, you must execute a DIM
statement for the array. Keep i n mind that the whole array takes up room in
memory, so don't create an array much larger than you'll need. To figure the
number of variables created with DIM, mult iply the total number of elements
plus one in each d imension of the array.

1 0 DIM A$(40), 87(1 5), CC%(4,4,4)

41 ELEMENTS 16 ELEMENTS 125 ELEMENTS

133

You can d imension more than one array in a DIM statement. However, be
careful not to d imension an array more than once.

END

When a program encounters an END statement, the program halts, as if i t ran
out of l ines. You may use CONT to restart the program.

FOR . . . TO . . . STEP

This statement works with the N EXT statement to repeat a section of the pro·
gram a set number of times. The format is:

FOR rJar. Name) = (Start of Count) TO (End of Count) STEP (Count By)

The loop variable wil l be added to or subtracted from during the program.
Without any STEP specified, STEP is assumed to be 1 . The start count and end
count are the l im its to the value of the loop variable.

1 0 FOR L = 1 TO 1 0 STEP . 1
20 PRINT L
30 NEXT L

The end of the loop value may be followed by the word STEP and another
number or variable. In this case, the value fol lowing STEP is added each time in·
stead of 1 . This allows you to count backwards, or by fractions.

GET
The GET statement allows you to get data from the keyboard, one character

at a time. When G ET is executed, the character that is typed is assigned to the
variable. If no character is typed, then a nul l (empty) character is assigned.

GET is followed by a variable name, usually a string variable. If a numeric
variable was used and a nonnumeric key depressed, the program would halt
with an error message. The G ET statement may be placed i nto a loop, checking
for any empty result. This loop will continue until a key is hit.

1 0 GET A$: I F A$ = ""THEN 1 0

GET#
The GET# statement is used with a previously OPENed device or f i le, to input

one character at a t ime from that device or f i le.

GET #1 ,A$

This wou ld input one character from a data f i le.

GOSUB
This statement is simi lar to GOTO, except the computer remembers which

program l i ne i t last executed before the GOSUB. When a l ine with a RETURN
statement is encountered, the program jumps back to the statement im·
mediately fol lowing the GOSUB. This is useful if there is a routine in your pro·
gram that occurs in several parts of the program. I nstead of typing the routine
over and over, execute GOSUBs each time the rout ine is needed.

20 GOSUB 800

134

GOTO OR GO TO
When a statement with the GOTO command is reached, the next l ine to be

executed wi l l be the one with the l ine number following the word GOTO.

IF . . . THEN
IF . . . THEN lets the computer analyze a situation and take two possible

courses of action, depending on the outcome. If the expression is true, the
statement following THEN is executed. This may be any BASIC statement.

If the expression is false, the program goes directly to the next l i ne.
The expression being evaluated may be a variable or formula, in which case it

is considered true if nonzero, and false if zero. In most cases, there is an ex
pression i nvolving relational operators (=, < , > ,< =, > =, < >
AND, OR NOT).

1 0 I F X > 1 0 THEN END

INPUT
The I N PUT statement allows the program to get data from the user, assign

ing that data to a variable. The program wil l stop, print a question mark (?) on
the screen, and wait for the user to type in the answer and hit RETURN.

IN PUT is fol lowed by a variable name, or a l ist of variable names, separated
by commas. A message may be placed within quote marks, before the l ist of
variable names to be I N PUT. If more than one variable is to be I NPUT, they must
be separated by commas when typed.

1 0 I N PUT "PLEASE ENTER YOUR FIRST NAME";A$
20 PRINT "ENTER YOUR CODE NUMBER";: IN PUT B

INPUTII
I NPUT# is s imi lar to I NPUT, but takes data from a previously OPENed f i le.

1 0 I NPUT#1 , A

LET
LET is hardly ever used in programs, since it is optional, but the statement is

the heart of all BASIC programs. The variable name which is to be assigned the
result of a calculation is on the left side of the equal sign, and the formula on
the right.

10 LET A = 5
20 LET D$ = "HELLO"

NEXT
N EXT is always used i n conjunction with the FOR statement. When the pro

gram reaches a N EXT statement, it checks the FOR statement to see if the l imit
of the loop has been reached. I f the loop is not f in ished, the loop variable is i n
creased by the specified STEP value. If the loop is f inished, execution proceeds
with the statement fol lowing N EXT.

N EXT may be fol lowed by a variable name, or l ist of variable names,
separated by commas. If there are no names l isted, the loop started is the one
being completed. If variables are g iven, they are completed in order from left to
right.

1 0 FOR X = 1 TO 1 00: N EXT

135

ON
This command turns the GOTO and GOSUB commands into special versions

of the IF statement. ON is fol lowed by a formula, which is evaluated. If the
result of the calculation is one, the f i rst l i ne on the l ist is executed; if the result
is 2, the second l ine is executed, and so on. If the result is 0, negative, or larger
than the list of numbers, the next l i ne executed wil l be the statement fol lowing
the ON statement.

1 0 INPUT X
20 ON X GOTO 1 0,20,30,40,50

OPEN
The OPEN statement al lows the 64 to access devices such as the d isk for

data, a printer, or even the screen. OPEN is fol lowed by a number (0-255), to
which all following statements wi l l refer. There is usually a second number
after the first, which is the device number.

The device numbers are:

o Screen
4 Printer
8 Disk

Following the device number may be a third number, separated again by a
comma, which is the secondary address.

In the case of the disk, the number refers to the buffer, or channel, number. In
the printer, the secondary address controls features l ike expanded printing. See
the Commodore 64 Programmer's Reference Manual for more details.

10 OPEN 1 ,0 OPENs the SCREEN as a device
20 OPEN 2,8,8,"D" OPENs the disk for reading, f i le to be searched for

is D
30 OPEN 3,4 OPENs the printer
40 OPEN 4,8,1 5 OPENs the data channel on the d isk

Also see: CLOSE, CMD, G ET#, I NPUT#, and PRINT#, system variable ST, and
Appendix B.

POKE
POKE is always fol lowed by two numbers, or formulas. The f irst location is a

memory location; the second number is a decimal value from 0 to 255, which
will be placed in the memory location, replacing any previously stored value.

10 POKE 53281 ,0
20 S = 4096*1 3
30 POKE S + 29,8

PRINT
The PRINT statement is the f irst one most people learn to use, but there are a

number of variations to be aware of. PRINT can be fol lowed by:

Text String with quotes
Variable names
Functions
Punctuation marks

136

Punctuation marks are used to help format the data on the screen. The com
ma divides the screen into four columns, wh i le the semicolon suppresses all
spacing. Either mark can be the last symbol on a l ine. This results in the next
thing PRINTed acting as if it were a continuation of the same PRINT statement.

10 PRINT "HELLO"
20 PRINT " H ELLO",A$
30 PRINT A + B
40 PRINT J;
60 PRINT A,B,C,D

Also see: POS, SPC and TAB functions

PRINTII
There are a few differences between this statement and PRI NT. PRI NT# is

fol lowed by a number, which refers to the device or data f i le previously
OPENed. This number is fol lowed by a comma and a l ist to be printed. The com·
ma and semicolon have the same effect as they do in PRI NT. Please note that
some devices may not work with TAB and SPC.

100 PRINT#1 ,"DATA VALUES"; A%, B1 , C$

READ
READ is used to assign information from DATA statements to variables, so

the information may be put to use. Care must be taken to avoid READing
strings where READ is expecting a number, which wi l l g ive a TYPE M ISMATCH
ERROR.

REM (Remark)
REMark is a note to whomever is reading a LIST of the program. It may ex·

plain a section of the program, or g ive additional instructions. REM statements
in no way affect the operation of the program, except to add to its length. REM
may be fol lowed by any text.

RESTORE
When executed in a program, the pOinter to which an item in a DATA state·

ment wi l l be READ next is reset to the first i tem in the l ist. This g ives you the
abi l ity to re-READ the information. RESTORE stands by itself on a l ine.

RETURN
This statement is always used in conjunction with GOSUB. When the pro·

gram encounters a RETURN, it wi l l go to the statement i mmediately following
the GOSUB command. If no GOSUB was previously issued, a RETURN
WITHOUT GOSUB ERROR wi l l occur.

STOP
This statement wi l l halt program execution. The message, BREAK I N xxx wi l l

be d isplayed, where xxx is the l ine number containing STOP. The program may
be restarted by using the CONT command. STOP is normally used in debugging
a program.

1 37

SYS
SYS is fol lowed by a decimal number or numeric value in the range 0-65535.

The program wi l l then beg in executing the mach ine language program start ing
at that memory location. This is s imi lar to the USR function, but does not al low
parameter passing.

WAIT
WAIT is used to halt the program unt i l the contents of a memory location

changes in a specif ic way. WAIT is fol lowed by a memory location (X) and up to
two variables. The format is:

WAIT X,Y,Z

The contents of the memory location are first exc lusive-ORed with the third
number, if present, and then logically ANDed with the second number. If the
result is zero, the program goes back to that memory location and checks
again. When the result is nonzero, the program conti nues with the next state
ment.

NUMERIC FUNCTIONS

ABS(X) (absolute value)
ASS returns the absolute value of the number, without its sign (+ or -). The

answer is always positive.

A TN(X) (arctangent)
Returns the angle, measured i n rad ians, whose tangent is X.

COS(}{) (cosine)
Returns the value of the cosine of X, where X is an angle measured in ra

d ians.

EXP(X)
Returns the value of the mathematical constant e(2.718281 83) raised to the

power of X.

FNxx(X)
Returns the value of the user-defined function xx created in a DEF FNxx(X)

statement.

INT(X)
Returns the truncated value of X, that is, with al l the decimal places to the

right of the decimal point removed. The result wi l l always be less than, or equal
to, X. Thus, any negative numbers with decimal places wi l l become the integer
less than their current value.

LOG(X) (logarithm)
Wil l return the natural log of X. The natural log to the base e (see EXP(X)). To

convert to log base 10, simpy d ivide by LOG(1 0).

PEEK(X)
Used to f ind out contents of memory location X, in the range 0-65535, g iving a

result from 0-255. PEEK is often used in conjunction with the POKE statement.

138

RND(X) (random number)
RN D(X) returns a random number in the range 0-1 . The fi rst random number

should be generated by the formula RND(- TI) to start th ings off differently
every t ime. After this, X should be a 1 or any positive number. I f X is zero, the
result wi l l be the same random number as the last one.

A negative value for X w i l l reseed the generator. The use of the same negative
number for X wi l l result in the same sequence of "random" numbers.

The formula for generating a number between X and Y is:

N = RND(1)* (Y - X) + X

where,
Y is the upper l imit
X is the lower range of numbers desired.

SGN(X) (sign)
This function returns the sign (positive, negative, or zero) of X. The result wi l l

be + 1 if positive, 0 if zero, and - 1 if negative.

SIN(X) (sine)
SIN(X) is the trigonometric sine function. The result w i l l be the sine of X,

where X is an angle in rad ians.

SQR(X) (square root)
This function wi l l return the square root of X, where X is a positive number or

O. If X is negative, an I LLEGAL QUANTITY ERROR results.

T AN(X) (tangent)
The result wi l l be the tangent of X, where X is an ang le in rad ians.

USR(X)
When this function is used, the program jumps to a machine language pro

gram whose start ing point is contained in memory locations. The parameter X
is passed to the machine language program, which wi l l return another value
back to the BASIC program. Refer to the Commodore 64 Programmer's
Reference Manual for more detai ls on this function and machine language pro
gramming.

STRING FUNCTIONS

ASC(X$)
This function wi J l return the ASCII code of the fi rst character of X$.

CHR$(X)
This is the opposite of ASC, and returns a string character whose ASCII code

is X.

LEFT$(X$,X)
Returns a string containing the leftmost X characters of $X.

LEN(X$)
Returned wi l l be the number of characters (including spaces and other sym

bols) in the string X$.

1 39

MIDS(XS,S,)()
This w i l l return a string contain ing X characters starting from the 5th

character in X$.

RIGHTS(XS,X)
Returns the rightmost X characters in X$.

STRS(X)
This wi l l return a string which is identical to the PRINTed version of X.

VAL(XS)
This function converts X$ into a number, and is essentially the inverse opera

tion from 5TR$. The string is examined from the leftmost character to the right,
for as many characters as are in recognizable number format.

10 X = VAL("1 23.456")
10 X = VAL("1 2A1 3B")
10 X = VAL("RIU01 7")
10 X = VAL(" - 1 .23.45.67")

OTH ER FUNCTIONS

FRE(X)

X = 1 23.456
X = 1 2
X = 0
X = - 1 .23

This function returns the number of unused bytes avai lable in memory,
regardless of the value of X. Note that FRE(X) wi l l read out in negative numbers
if the number of unused bytes is over 32K.

POS(X)
This function returns the number of the column (0-39) at which the next

PRINT statement wi l l begin on the screen. X may have any value and is not
used.

spe(X)
This is used in a PRINT statement to skip X spaces forward.

TAB(X)
TAB is also used in a PRINT statement; the next item to be PRINTed wi l l be

in column X.

1 40

APPEN DIX D
ABBREVIATIONS FOR BASIC KEYWORDS

As a time-saver when typing in programs and commands, Commodore's
BASIC for the 64 lets the user abbreviate most keywords. The abbreviation for
PRINT is a question mark. The abbreviations for other words are made by typing
the first one or two letters of the word, fol lowed by the SHI FTed next letter of
the word. If the abbreviations are used in a program l i ne, the keyword wi l l LIST
in the ful l form.

Looks like Loolcs lilc.

Com- Abbreyi· this on Com- Abbreyi- this on
mand ation sc n mand at ion scre.n

ASS A IIII s A m END E BlI N E [Zl
AN D A llii N A [Zl EXP E BII x E �
ASC A _ S A [!] FN NONE FN

ATN A _ T A D FOR F BII O F 0
CHR$ C " H c [] FRE F BII R F Q
CLOSE CLa. 0 CLO GET G IDIID E G O
CLR C _ L C D GET# NONE GET#

CMD C IIIIII M c IS] GOSUS GO IDIID S GO[!]
CO NT C _ O C D GOTO G BIIII 0 G O
cos NONE COS IF NONE I F

DATA D IDIID A D [!] I N PUT NONE I N PUT

DEF D IIIIII E D O I N PUT# I IIII N [Zl
DIM D IIIIII I D E;] INT NONE INT

1 41

Looks like Looks like
Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen

LEFT$ LE BIID F LE Q R IGHT$ R BIID I R EJ
LEN NONE LEN RND R BIID N R fZI
LET L BIIiI E L U RUN R BIID u R Q
LIST L BIID I L tJ SAVE S BIID A S �
LOAD l BIID 0 L O SGN S BIIiI G S []
LOG NONE LOG S IN S BIID I S �
MID$ MBIID I M EJ SPC(S BIID P s O
NEW NONE NEW SQR S BIID Q S .
NEXT N BIID E N U STATUS ST ST
NOT N " O N O STEP ST BIID STE]
ON NONE ON STOP S BIID T S []
OPEN OBllil p 0 0 STR$ ST BIID R ST Q
OR NONE OR SYS S " Y S []
PEEK p EDID p El TAB(T EDID A T �
POKE p EDID 0 p O TAN NONE TAN
POS NONE POS THEN T BIID H T O
PR INT ? ? T IME T I T I
PR INT# P B!lD R P b) T IME$ T I$ T I$
READ R B!ID E R El USR u BIID s u �
REM NONE REM VAL V BllD A V �
RESTORE RE B!lD S RE � VER IFY V BllD E v EJ
RETURN RE BIID T RE [l] WAIT W BIID A W �

1 42

APPEN DIX E
SCREEN DISPLAY CODES

The fol lowing chart l ists all of the characters bui lt into the 64's character
sets. It shows which numbers should be POKEd into screen memory (locations
1 024-2023) to get a desi red character. Also shown is which character cor
responds to a number PEEKed from the screen.

Two character sets are avai lable, but only one set at a t ime. This means that
you cannot have characters from one set on the screen at the same t ime you
have characters from the other set d isplayed. The sets are switched by holding
down the ImID and � keys simultaneously.

From BASIC, POKE 53272,21 wi l l switch to upper case mode and POKE
53272,23 switches to lower case.

Any number on the chart may also be d isplayed in REVERSE. The reverse
character code may be obtained by adding 1 28 to the values shown.

If you want to display a sol id c ircle at location 1 504, POKE the code for the
circle (81) into location 1 504: POKE 1 504,81 .

There is a corresponding memory location to control the color of each
character d isplayed on the screen (locations 55296-56295). To change the color
of the circle to yellow (color code 7) you would POKE the correspond ing
memory location (55776) with the character color: POKE 55776,7.

Refer to Appendix G for the complete screen and color memory maps, along
with color codes.

NOTE: The fol lowing POKEs display the same symbol in set 1 and 2: 1 , 27-64,
91 -93, 96-1 04, 1 06-121 , 1 23-127.

SCREEN CODES
SET 1 SET 2 POKE SET 1 SET 2 POKE SET 1 SET 2 POKE

@ 0 C c 3 F 6

A a 0 d 4 G g 7

B b 2 E e 5 H h 8

1 43

SET 1 SET 2 POKE SET 1 SET 2 POKE SET 1 SET 2 POKE

I 9 % 37 � A 65

J 1 0 & 38 IT] B 66

K k 1 1 39 B C 67

L 1 2 40 EJ 0 68

M m 1 3 41 Ej E 69

N n 1 4 42 bJ F 70

0 0 1 5 + 43 [J G 71

P P 1 6 44 [] H 72

Q q 1 7 45 EJ I 73

R 1 8 46 � J 74

5 s 1 9 47 � K 75

T 20 0 48 0 L 76

U u 21 49 � M 77

V v 22 2 50 0 N 78

W w 23 3 51 0 0 79

X x 24 4 52 0 P 80

Y Y 25 5 53 • Q 81

Z z 26 6 54 bJ R 82

27 7 55 � 5 83

£ 28 8 56 [J T 84

29 9 57 G3 U 85

i 30 58 � V 86

+- 31 59 C W 87

32 < 60 � X 88

33 61 [] Y 89

34 > 62 [l] Z 90

35 ? 63 EE 91

$ 36 B 64 IJ 92

1 44

lET 1 lET 2 POKE lET 1 lET 2 POKE lET 1 lET 2 POKE

[] 93 � � 1 05 [J 1 1 7

ITTI 61) 94 0 1 06 [] 1 1 8

� � 95 [E 1 07 U 1 1 9

96 C. 1 08 � 1 20

97 [g 1 09 � 1 21

� 98 Ell 1 1 0 0 0 1 22

0 99 � 1 1 1 � 1 23

D 1 00 en 1 1 2 � 1 24

0 1 01 � 1 1 3 � 1 25

II 1 02 ttl 1 1 4 � 1 26

0 1 03 8J 1 1 5 � 1 27

� 1 04 (] 1 1 6

Codel from 1 28-255 are reversed Image. of code. 0-127.

1 45

APPEN DIX F
ASCII AN D CH R$ CODES

This appendix shows you what characters wi l l appear if you PRINT CH R$(X),
for all possible values of X. It wi l l also show the values obtained by typing
PRINT ASq"x"), where x is any character you can type. This is useful in
evaluating the character received i n a GET statement, converting upperllower
case, and printing character based commands (l i ke switch to upperllower case)
that cou ld not be enclosed in quotes.

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS

0 II 1 7 34 3 51

• 1 8 # 35 4 52

2 II 1 9 $ 36 5 53

3 • 20 0/0 37 6 54

4 21 & 38 7 55

- 5 22 39 8 56

6 23 40 9 57

7 24 41 58

DISABLES_tl8 25 42 59

ENABLES .. tl9 26 + 43 C 60

1 0 27 44 61

1 1 - 28 45 => 62

1 2 II 29 46 ? 63

III!II 13 • 30 47 @ 64

; 1 4 - 31 0 48 A 65

1 5 .. 32 49 B 66

1 6 33 2 50 C 67

1 46

PRINTS CHAt PRINTS CHRS PRINTS CHAt PRINTS CHAt

0 68 [!] 97 Em 1 26 Grey 3 1 55

E 69 rn 98 � 1 27 • 1 56

F 70 El 99 1 28 iii 1 57

G 71 El 1 00 Orange 1 29 - 1 58

H 72 U 1 01 130 • 1 59

I 73 g 1 02 131 lID 1 60

J 74 D 1 03 132 IJ 16 1

K 75 [] 1 04 f1 133 .- 1 62

l 76 bJ 1 05 f3 134 D 1 63

M 77 � 1 06 f5 135 0 1 64

N 78 � 1 07 f7 136 0 1 65

0 79 0 1 08 f2 137 III 1 66

P 80 tSJ 1 09 f4 138 0 1 67

Q 81 0 1 1 0 f6 139 � 1 68

R 82 0 1 1 1 f8 1 40 � 1 69

5 83 0 1 1 2 _ .1 41 [) 1 70

T 84 • 1 13 1_ 1 42 rn 1 71

U 85 D 1 1 4 1 43 r:. 1 72

V 86 � 1 1 5 • 1 44 [g 1 73

W 87 0 1 1 6 II 1 45 6J 1 74

X 88 G:l 1 1 7 • 1 46 � 1 75

Y 89 � 1 1 8 II 1 47 ca 1 76

Z 90 OJ 1 1 9 • 1 48 E:l 1 77

[91 � 1 20 Brown 1 49 Ei3 1 78

£ 92 [] 1 21 LI. Red 1 50 8J 1 79

1 93 [I] 1 22 Grey 1 1 51 D 1 80

i 94 EE 1 23 Grey 2 1 52 IJ 1 8 1

- 95 IJ 1 24 LI. Green 1 53 [] 1 82

El 96 rn 1 25 LI. Blue 1 54 U 1 83
I

1 47

PAINTS

�
�

CODES
CODES
CODE

CHAS

1 84

1 85

PAINTS

0
.:J

1 92-223
224-254
255

CHAS

1 86

1 87

PAINTS

�
E!J

SAME AS
SAME AS
SAME AS

1 48

CHAS

1 88

1 89

PAINTS

�
�

96-1 27
1 60-1 90
1 26

CHAS

1 90

1 91

APPEN DIX G
SCREEN AN D COLOR M EMORY MAPS

The following charts list which memory locations control placing characters
on the screen, which locations are used to change individual character colors,
and they show character color codes.

SCREEN M EM ORY MAP

10
COLUMN

20 30 39
1063

�
1024 -1=l=1=l=1=l=l=l=l=l=l=l=l=l=t=!=t=!=R=t+t+t+HHHHH=t=t+R 1064
1 104
1 144
1 1 84
1224
1264
1304
1344
1384
1424
1464
1 504
1544
1584
1624
1664
1704
1 744
1784
1824
1864
1904
1944
1984

. I

t
2023

20

24

The actual values to POKE into a color memory location to change a
character's color are:

o BLACK
1 WHITE
2 RED
3 CYAN
4 PURPLE
5 G REEN
6 BLUE
7 YELLOW

8 ORANGE
9 BROWN
1 0 Light RED
1 1 GRAY 1
1 2 GRAY 2
1 3 Light GREEN
14 Light BLUE
15 GRAY 3

1 49

For example, to change the color of a character located at the upper left-hand
corner of the screen to red, type: POKE 55296,2.

10

COLOR M EMORY MAP

COLUMN
20 30 39

55335
�

55296-Q:U::r::I=+U+1I=+P=+=I=+P=+=I=+P=I=I=++=l+H+l=t=H+=m 55336
55376
55416
55456
55496
55536
55576
55616
55656
55696
55736
55776
55816
55856
55896
55936
55976
56016
56056
56096
56136
56176
56216
56256

1 50

t
56295

10 �

20

24

APPEN DIX H
DERIVI NG MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to 64 BASIC may be calculated as follows:

FUNCTION BASIC EQUIVALENT

SECANT SEqX) = lICOS(X)

COSECANT csqX) = 1/SI N(X)

COTANGENT COT(X) = 1 1T AN(X)

I NVERSE SINE ARCSIN(X) = ATN(X/SQR(- x· x + 1))

I NVERSE COSINE ARCCOS(X) = - ATN(XISQR

(- X·X+ 1)) + JC /2

I NVERSE SECANT ARCSEqX) = ATN(X/SQR(X· X - 1))

I NVERSE COSECANT ARCCSqX) = ATN(X/SQR(X· X - 1))

+ (SGN(X) - 1 · JC /2)

INVERSE COTANGENT ARCOT(X) = ATN(X) + JC /2

HYPERBOLIC SINE SINH(X) = (EXP(X) - EXP(- X))/2

HYPERBOLIC COSINE COSH(X) = (EXP(X) + EXP(- X))/2

HYPERBOLIC TANGENT TANH(X) = EXP(- X)/(EXp(x) + EXP

(- x))·2 + 1

HYPERBOLIC SECANT SECH(X) = 21(EXP(X) + EXP(- X))

HYPERBOLIC COSECANT CSCH(X) = 21(EXP(X) - EXP(- X))

HYPERBOLIC COTANGENT COTH(X) = EXP(- X)/(EXP(X)

- EXP(- X)) · 2 + 1

I NVERSE HYPERBOLIC SINE ARCSINH(X) = LOG(X + SQR(X· X + 1))

I NVERSE HYPERBOLIC COSINE ARCCOSH(X) = LOG(X + SQR(X · X - 1))

I NVERSE HYPERBOLIC TANGENT ARCTANH(X) = LOG((1 + X)/(1 - X))/2

INVERSE HYPERBOLIC SECANT ARCSECH(X) = LOG((SQR

(- X· X + 1) + lIX)

I NVERSE HYPERBOLIC COSECANT ARCCSCH(X) = LOG((SGN(X)* SQR

(X· X + 1/x)

I NVERSE HYPERBOLIC COTANGENT ARCCOTH(X) = LOG((X + 1)/(X - 1))/2

1 51

APPEN DIX I
P INOUTS FOR IN PUT/OUTPUT DEVICES

This appendix is designed to show you what connections may be made to
the 64.

1) Game I/O
2) Cartridge Slot
3) AudioNideo
4) Serial I/O (Disk/Printer)
Control Port 1

Pin Type
1 JOYAO
2 JOYA1
3 JOYA2
4 JOYA3
5 POT AY
6 BUTTON AlLP
7 + 5V
8 GND
9 POT AX

1 2 3 4 5
o 0 0 0 0

o 0 0 0
6 7 8 9

Control Port 2

Pin Type
1 JOYBO
2 JOYB1
3 JOYB2
4 JOYB3
5 POT BY
6 BUTTON B
7 + 5V
8 G N D
9 POT BX

5) Modular Output
6) Cassette
7) User Port

Note

MAX. 1 00mA

Note

MAX. 1 00mA

1 52

Cartridge Expansion Slot Cartridge Expansion Slot

Pin Type Pin Type

1 GND 1 2 BA
2 + 5V 1 3 DMA
3 + 5V 1 4 CD7
4 IRQ 1 5 CD6
5 CAIW 1 6 CD5
6 Dot Clock 1 7 CD4
7 I/O 1 1 8 CD3
8 GAME 1 9 CD2
9 EXROM 20 CD1

10 I/O 2 21 CDO
1 1 ROM L 22 GND

Pin Type Pin Type

A GND N CA9
B ROM H P CA8
C RESET R CA7
D N M I S CA6
E S 02 T CA5
F CA1 5 U CA4
H CA1 4 V CA3
J CA1 3 W CA2
K CA1 2 X CA1
L CA1 1 Y CAO
M CA1 0 Z GND

2 2 21 20 1 9 1 8 1 7 ' 6 ' � . . , J ' 2 " 10 9 8 7 e � 4 J 2 1

I :::::::::::::::::::::: I
I Y X W V U T S R P N M L K J H F E D C B A

AudiolVideo

Pin Type Note
I LUMINANCE
2 GND
3 AUDIO OUT
4 VI DEO OUT
5 AUDIO IN

Cassette

Pin Type
A- I GND 1 2 3 4 5 8

B-2 + 5V
C-3 CASSETTE MOTOR :::::: D-4 CASSETTE READ II B C D E F
E-5 CASSETTE WRITE
F-6 CASSETTE SENSE

1 53

Serial I/O

Pin Type

1 SERIAL SRQI N
2 G N D
3 SERIAL ATN I N/OUT
4 SERIAL ClK I N/OUT
5 SERIAL DATA I N/OUT
6 RESET

User I/O

Pin Type Note

1 G N D
2 + 5V MAX. 1 00mA
3 RESET
4 CNTI
5 SP1
6 CNT2
7 SP2
8 PC2
9 SER. ATN I N

1 0 9 VAC MAX. 1 00mA
1 1 9 VAC MAX. 1 00mA
1 2 G N D

Pin Type Note

A G N D
B FLAG2
C PBO
D PB1
E PB2
F PB3
H PB4
J PB5
K PB6
l PB7
M PA2
N G N D

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

::::::::::::
A B C 0 E F H J K L M N

1 54

APPEN DIX J
PROG RAMS TO TRY

We've included a number of usefu l programs for you to try with your 64.
These programs wi l l prove both enterta in ing and useful .

1 0 0 p r i n t " P j o t t o j i M b u t t .. r f i E- l d "
1 2 0 i n p u t " P w a n t i n s t r u c t i o n 5 " i z ' : i f a s c (z S) - 7 8 g o t 0 2�O
1 3 0 p r i n t " P t r y t o q U E- 5 5 thto M y s t to r y 5 - 1 E' t t . r w o r d "
1 4 0 p r i n t " l!I \j o u M u s t g u o;. s s o n l '� l o;. g a l 5 - 1 .. t t to r "
1 5 0 p r i n t " w o r d s , t o o • • • "
1 6 0 p r i n t " y o u w i l l bE' t o l d t h o;. n u m b .. r o f M a t c h to s "
1 7 0 p r i n t " (o r ' j o t s ') o f y o u r g u o;. s s . "
1 8 0 p r i n t " !!I h i n t : th .. t r i c k i s to lI a r '� s l i gh t l y "
1 9 0 p r i n t " f r o . o n to g U E' S S to t h E' n .. x t ; so t h a t "
2 0 0 p r i n t " i f y o u q U E- 5 5 ' b a t c h ' a n d g E' t 2 j o t s "
2 1 0 p r i n t " y o u M i g h t t r y ' b o t c h ' o r ' c h a r t ' "
2 2 0 p r i n t " f o r t h .. n to >: t g U E- s s • • • "
2 5 0 d a t a b x b s f , i p c c z , d b d i f , to s f b to , p q g b .
2 6 0 d a t a h p s h f , i b u d i , d j w j M , k p M M z , l b z b l
2 7 0 d a t a s b k b i , . f w f M , n j n j d , b o o f y , q j q f s
2 8 0 d a t a r ll f t u , s j w f s , q s f t t , p u u f s , f w f o u
2 9 0 d a t a x f b w f , f y u p M , n ll t i z , a f c s b , g j a a z
3 0 0 d a t a u i j d l , .. s ll o l , g M p p .. , u j h f s , g b l f s
3 1 b d a t a c p p u i , M z j o h , t r ll b u , h b ll a f , p x j o h
3 2 0 d a t a u i s f f , t j h i u , b Y M f t , h s ll n q , b s f o b
3 3 0 d a t a r ll b s u , d s f f q , c f M d i , q s f t t , t q b s l
3 4 0 d a t a s b .. b s , s ll s b . , t n f M M , g s p X O , o;. S j g u
4 0 0 n - 5 0
4 1 0 d i M n S (n f , z (5) , y (5)
4 2 0 f o r j - l t o n : r .. a d n S (j) : n to x t j
4 3 0 t = t i
4 4 0 t = t / l 0 0 0 : i f t > = l t h E- n g o t 0 4 4 0
4 5 0 z - r n d (- t)
5 0 0 g - O : n S - n S (r n d (l) * n + l)
5 1 0 p r i n t " !!I i h a ll " a f i ll E- l E- t t E- r w o r d : " : i f r > O g o t 0 5 6 0
5 2 0 p r i n t " q U E- 5 5 (w i t t, l E- ,� a l w o r d s) "
5 3 0 p r i n t " a n d i ' l l t .. l l 'j O U h o w M a n y "
5 4 0 p r i n t '' ' j o t s ' , o r M a t c h i n g l E' t t e- r s , "
5 5 0 p r i n t " IJ O ll h a v l? . . . 1I

5 6 0 g = g + l : i n p u t " 'J o u r w o r d " ; z S
5 7 0 i f 1 .. n (z S) < > 5 t h E- n p r i n t " 'j o u M u s t 'J U E' S S a

5 - 1 e- t t to r w o r d ' " : g o t 0 5 6 0
5 8 0 II = O : h = O : III = O
5 9 0 f o r j = l t 0 5
6 0 0 z = a s c (M i d S (z S , j , l » : y - a s c (III i d S (n S , j , l » - I : i f y = 6 4 t h to n y = 9 0
6 1 0 i f z < 6 5 0 r z > 9 0 t h .. n p r i n t " t h a t ' s n o t a w o r d ! " : ,] o t 0 5 6 0
6 2 0 i f z = 6 5 0 r z = 6 9 0 r z = 7 3 0 r z - 7 9 0 r z = 8 5 0 r z = 8 9 t h .. n ll = lI + l
6 3 0 i f z = y t h .. n ,. - . + 1
6 4 0 z (j) = z : 'j (j) = 'j : n .. :{ t j
6 5 0 i f m = S g o t 0 8 0 0
6 6 0 i f ll = 0 0 r ll = 5 t h .. n p r i n t " C 0 "1 .. o n • • w t, a t k i n d o f

a w o r d i s t t, a t 7 " : g o t 0 5 6 0
6 7 0 f o r j - l t 0 5 : y = Y (j)
6 8 0 f o r k = l t 0 5 : i f y = z (k) t h e- n h = h + l : z (k) = 0 : q o t 0 7 0 0
6 9 0 n .. x t k ·

-

7 0 0 n E' x t j
7 1 0 pr i n t " C D D D D U D U IHl D D D D D D D D D D " j H j " J O T S "
7 2 0 i f g < 3 0 g o t 0 5 6 0
7 3 0 �' r i n t " i ' d . b .. t t E' r t .. l l y o u • • w o r d w a s

1 55

7 4 0 f o r j = l t o 5 :� r i n t c h r t (y (j » i : n � x t j
7 5 0 p r i n t " ' ' ' : g o t o 8 1 0

8 0 0 p r i n t " 'j o u g o t i t i n o n l 'j " i g i " 'J U � S S "' s . "
8 1 0 i n p u t ll t' a n o t h e r w o r d " ; z t
8 2 0 r = l : i f a s c (z t) < > 7 8 g o t o 5 00

2

3

4

6

r l? lI1
r E"fn
r l? fll
r l? fIl
r t? M
r e ffl

7 r E- �'1

:e; -:e; .,:.:.

* * *
* * *
* * *
* * *

S E- D U E- n e E-

f r o ,,1 P E- t u s. €' r g r o u p
s o f t w a r ", t? }: c h a n '.;J1?
p o loo :-, 3 7 1

M o n t g o fl'l l? r l.� v i l l '? , p a

5 0 d i ,. a t (2 6)

1 8 9 3 6

1 0 0 z t = " a b c d E- f g h i j k l m n o p q r s t u v w ;.: u z "
1 1 0 z l t = " 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 "

2 0 0 r.r i n t " � tl tI .. n t '? r l .. n g t t, o f s t r i n g t o b E- s " Q u E- n e E- d tl "

2 2 0 i nClu t li M a >: i M U "l I t? n q t h i s 2 6 " i 5 7-
2 3 0 i f s Z (1 o r 5 Z > 2 6 t h .. n 2 0 0

2 4 0 5 = s 7-
3 0 0 f o r i = l t o 5

3 1 0 a $ (i) = m i d $ (z $. i . 1)
3 2 0 n .. ;.: t i
4 0 0 r ", m r a n d o m i z ", s t r i ng
4 2 0 f o r i = l t o s
4 3 0 k = i n t (r n d (I) E s + 1)
4 4 0 U = a $ (i)
4 5 0 a $ (i) = a $ (U
4 6 0 a $ (U = U
4 7 0 n ", >: t i
4 e O g 0 5 u b 9 5 0

::; Y ::i t = O
6 0 0 r t? m r t? v t? r s t? s u t' s t r i n g
6 0 5 t = t. + 1

6 1 0 i n p u t " h o w lIl a n l� t o r' €' v €" r s e- " i r X
6 2 0 i f r 7- = O g o t o 9 0 0

6 3 0 i f r Z > O a n d r Z < = s g o t o 6 5 0

6 4 0 c:'r i n t I ' m u s t b l? b t? t w t? t? n 1 a n d " ; 5 : '.:;I o t o 6 1 0

6 5 0 r = i n t (r 7- / 2)
6 6 0 f o r i = 1 t o r
6 7 0 t $ = a $ (i)
6 8 0 a $ (i) = a $ (r 7- - i + l)
6 '1 0 a $ (r Z - i + 1) = t. $
7 0 0 n ", ,, t i
7 5 0 .� o s u t. 9 5 0
8 0 0 e = l : f o r i = 2 t. o s
8 1 0 i f a $ (i l > a $ (i - I) g o t o 8 3 0

8 2 0 e = O
8 3 0 n €' }: t i
8 4 0 i f e = O g o t o 6 0 0

8 5 0 [)r i n t " f' I� O U d i d i t i n I ' ; t ; 1 1 t r i e- s "
9 0 0 r '? m e h '? e k f o r a n o t h . r g a m ",
9 1 0 i n r. u t " I:' w a n t t o ro l a l,l a g a i n " ; y $
9 '2 0 i f l ", f t $ (') $, I) = " '� " o r '� $ = " () k " o r ') $ = " 1 " g o t o 2 0 0
9 3 0 E- n d
9 5 0 p r i n t
9 6 0 p r i n t l E- f t $ (z l $, 5)
9 7 0 f o r i = 1 t o s : p r i n t a $ (i) ; : n '? >: t i
9 �, 0 c.r i n t " I:' ''
9 9 0 r '? t u r n

ThIS program courlesy 01 Gene Deals

1 56

90 REM P I RNO KEYBORRD
1 00 F'R HIT " :I ;.� �J �J I �.� 1'.11 �fl I �,I I'JI I i�A i'g "

1 1 0 F'R I tIT " ;:� �I !,I I ;'.1 �! ",I i I!.! �J I �I �I "

1 2 0 F'R lilT " .1 �J 11.1 I i!,1 ;!� �,!I I �j I!.I I �j IIJ "

1 :;:(1 F'F: I NT " ;j I I I I I I I I I I I I "

1 4 0 P R I NT " �p 1 1,1 I E I F' I T I 'r' I U I I 1 0 I F' I '� I +' I T' "
1 50 PF: I �n " !r :::P I� C E ' FOR :::OLO OF: POL','PHOt'l I C "

1 60 PR I N T " :�" F I ,. F::;: . F 5 . F7 · OCT R',/E :3ELEC T I Ot, "

1 70 P R I NT " �" F2 . �4 .. F6 .. F 8 " WAVEFORMm"

1 :30 PI": I t'n " HA t,IG IXI . :�; E T T I t"IC; UP FF:EC!UEI'IC',' T AE:L E • • • "

1 90 S = 1 3*4096+ 1 02 4 : D I MF � 2 6) : D I �K (2 55)

200 FOR I =OT02:3 : F'CW' E:::+ I . (1 : I 'IE :, : T
2 1 0 F l =7040 : F OF: I = 1 r026 : F ' : .� 7- 1 :" =F l '+'S . ::: + ::;:O : F 1 =F L" 2 'l' < 1 ,.-' 1 2) : NE:-":T

220 K $ = t l 0 2 "'J:::ER5T6'T'7U I :?OOF'I��--·+' E "r" "
2 '::0 FOP I = 1 TOLEt l (f · : l' : ' : t·:: ' : f"l ':,C ', 1" 1 1 OJ: , K T ,. I ») = 1 : HE:"':T

2 4 0 F'R UIT " :J
2 5 0 AT_0 : DE = 0 : SU= 1 5 : RE = 9 : SV=SU* 1 6 . RE : AV = A T * 1 6 + 0 E :

WV = 1 6 : �� = O : t'1 : 1 : O C = '� : H8 = : S � : � = (

260 FOR I . O T 0 2 : P O k E S . 5 + I *7 .. RT+' 1 6 +DE : P O K E S + 6 + I +' 7 .. SU+' 1 6 + P E

2 7 0 pm":E:::+2+ I +' 7 " 4'X'ORt'lD 2 5 5 : P O f'::E::: + 3 + 1 +'7 " 4000" ,.'256 : t'IE: ·: T

2 8 0 POKES+24 .. 1 5 : REM+ 1 6+64 : P OKES +2:;: . 7

:300 G E T A :' : I FA$ = " " THEH:::OO

3 1 0 FR=F < K < AS� < R S »)) , ' M : T=V+'7 : C P = S + T + 4 : I FFR ==THEN500

320 POKES+6+T .. Z : REM F I N I SH D E C , �:US

'325 POkE::::+5-. T . Z : F:Et-1 F I t ' l I '::H R T T, 'REL

:::;:0 F'OKECP . ::: : POfcECF: . 0 : F: EI'1 F I :": OFF

340 P O K ES + T , F P - H 8 +' I N T < FP/HB) : R EM SET L O

350 F' OkES+ l . T . F P , 'H8 : R E M S E T H I

360 P O K E S + 6 + T .. SV : P E M S E T DEC,'SUS

365 P O K E S + 5 + T . . RV : P E M SET ATT/REL

:;: 7 0 POKECP " "1 "/+ 1 : Fo r? I = 1 T05 0 +'R T : I rE:":T

:;: 75 POKECP . WV : R E M PULSE

�30 I F P = l THENV=V + l : I F V = 3 T H E N V = 0

4(1(1 !JOTO:�:OO

500 I F R S = " ii" T HE I' 1 1'1= 1 : OC=4 : G O T 03(t0

5 1 0 I FRS= " !!" T H E I H'h2 : oe = .;: : C·O TCI':;:OO

5 2 (\ I F R S = " II" THENI'1=-' : O C = 2 : (; O T O ::;: !)O

5:30 I FAS= " II" T H E t'H'1. :::: : ':' C . 1 : C·OTO :;: (tI)

540 I FA $. " �" THEIH,j .O , .r/. 1 6 : 1:; O T O '":(tO

550 I F AJ': = " !WI! THEt·H·J= t : 1.·4' =32 : e.C! T(r�:OO
-:·60 I F A $ = I! :;I" THE I" 1 l·J=2 : �·J''''' == 6 ·-t : (, O TCI :�: O �)

570 I F t =U . " ." THEt H,j .::: : 1,j',/ . 1 2 ::: : I:· O T O ::00

5:":0 I FI� :f. . " " TH EI" iP . 1 - P : G O T O:::O O

590 I F H �t =-..:: I ! :J" T H E H:::OO

::: 1 1,. (.ETI� -' : [F t=U. " " THEI i::: (1) : I ,m I T FOP 1 : 1 f E 'T'
::' 2 0 F r::' I tITRl' : r.: E TI.lF't l

NOTES:

Line 1 00 uses (SH I FT C L R/HOM E).

(CTRL 9),(CT R L)).(SHIFT B),
Line 1 50 uses (CRSR DOWN)

Line 240 uses (CRSR UP)
Line 500 uses (11)

Line 5 1 0 uses (13)

Line 520 uses (1 5)

Line 530 uses (17)

Line 540 uses (12)

Line 550 uses (14)

Line 560 uses (16)

Line 570 uses (18)

Line 590 uses (SH I FT C L R/ H O M E)

1 57

APPENDIX K
CONVERTING STANDARD BASIC PROGRAMS
TO COMMODORE 64 BASIC

I f you have programs written in a BASIC other than Commodore BASIC,
some m i nor adj ustments may be necessary before run n i ng them on the 64.
We've i nc luded some h i nts to make the conversion easier.

String Dimensions
Delete all statements that are used to declare the length of strings. A state

ment such as DIM A$(I,J), which d imensions a stri ng array for J elements of
length I, should be converted to the Commodore BASIC statement DIM A$(J).

Some BASICs use a comma or ampersand for string concatenation. Each of
these must be changed to a plus sign, which is the Commodore BASIC
operator for string concatenation.

I n Commodore 64 BASIC, the M I D$, RIG HT$, and LEFT$ functions are used
to take substri ngs of strings. Forms such as A$(1) to access the I th character in
A$, or A$(I,J) to take a substring of A$ from position I to J , must be changed as
fol lows:

Other BASIC
A$(I) = X$
A$(I,J) = X$

Commodore BASIC
A$ = LEFT$(A$, 1 - 1) + X$ + M I D$(A$,I + 1)
A $ = LEFT$(A$, 1 - 1) + X$ + M I D$(A$,J + 1)

Multiple Assignments
To set B and C equal to zero, some BASICs al low statements of the form:

1 0 LET B = C = 0

Commodore BASIC on the 64 would interpret the second equal sign as a
logical operator and set B = - 1 if C = O. I nstead, convert this statement to:

1 0 C = 0 : B = 0

Multiple Statements
Some BAS ICs use a backslash (\) to separate mu ltiple statements on a l ine.

With Commodore BAS IC, separate al l statements by a colon (:) .

MAT Functions
Programs using the MAT functions available on some BASIC� must be

rewritten using FOR . . . N EXT loops to execute properly.

1 58

APPEN DIX L
ERROR M ESSAG ES

This appendix contains a complete l ist of the error messages generated by
the 64, with a description of causes.

BAD DATA String data was received from an open f i le, but the program was ex
pecti n g n u meric data.

BAD SUBSCRIPT The program was t rying to reference an element of an array
whose number is outside of the range speci fied i n the D I M statement.

BREAK Program execution was stopped because you hit the STOP key.

CAN'T CONTINUE The CONT command wi l l not work, either because the pro
g ram was never RUN, there has been an error, or a l i ne has been edited.

DEVICE NOT PRESENT The requi red 1/0 device was not avai lable for an OPEN,
CLOSE, CMD, PRI NT#, I N PUT#, or G ET#.

DIVISION BY ZERO Division by zero is a mathematical oddity and not al lowed.

EXTRA IGNORED Too many i tems of data were typed in response to an I N PUT
statement. Only the f i rst few i tems were accepted.

FILE NOT FOUND If you were looking for a fi le on tape, an END-OF-TA P E
marker was found. If you were looking on disk, n o file with that name exists.

FILE NOT OPEN The f i le specified in a CLOSE, CMD, PRI NT#, I N PUT#, or
G ET#, must f i rst be OPENed.

FILE OPEN An attempt was made to open a f i le using the number of an al ready
open f i le.

FORMULA TOO COMPLEX The string expression being evaluated should be
split i nto at least two parts for the system to work with, or a formula has too
many parentheses.

ILLEGAL DEVICE NUMBER Occurs when you try to access a device i l legal ly
(e.g., LOADing from keyboard, screen, or RS-232C).

ILLEGAL DIRECT The I N PUT statement can only be used with in a program, and
not in d i rect mode.

ILLEGAL QUANTITY A number used as the argument of a f u nction or statement
is out of the al lowable range.

LOAD There is a problem with the program on tape or d isk.

MISSING FILE NAME LOADs and SAVEs from the serial port (e.g. , the d isk) re
q u i re a f i le name to be suppl ied. Key i n the f i le name.

NEXT WITHOUT FOR This is caused by either i ncorrectly nesti ng loops or hav
ing a variable name in a N EXT statement that doesn't correspond with one i n a
FOR statement.

NOT INPUT FILE An attempt was made to I N PUT or G ET data from a f i l e which
was spec if ied to be for output only.

NOT OUTPUT FILE An attempt was made to PRINT data to a f i le which was
spec if ied as i n put only.

1 59

OUT OF DATA A READ statement was executed but there is no data left
u n R EAD in a DATA statement.

OUT OF M EMORY There is no more RAM available for program or variables.
This may also occur when too many FOR loops have been nested, or when
t here are too many GOSUBs in effect.

OVERFLOW The result of a computation is larger than the largest number
al lowed, which is 1 .701 4 1 884E + 38.

REDIM'D ARRAY An array may only be DI Mensioned once. If an array variable is
used before that array is DI M 'd, an automatic DIM operation is performed on
that array setting the number of elements to ten, and any subsequent DIMs wi l l
cause this error.

REDO FROM START Character data was typed i n duri ng an I N PUT statement
when numeric data was expected. J ust re-type the entry so that i t is correct, and
the program w i l l continue by itself.

RETURN WITHOUT GOSUB A RETU RN statement was encountered, and no
GOSUB command has been issued.

STRING TOO LONG A stri ng can contain up to 255 characters.

?SYNTAX ERROR A statement is u n recognizable by the 64. A missing or extra
parentheses, m isspe l led keywords, etc.

TOO MANY FILES You tried to OPEN more than 10 f i les at one t i me.

TYPE MISMATCH This error occurs when a number is used in place of a string,
or vice-versa.

UNDEF'D FUNCTION A user defi ned function was referenced, but it has never
been defined using the DEF FN statement.

U N DEF'D STATEMENT An attempt was made to GOTO or GOSUB or RUN a
l i ne number that doesn't exist.

VERIFY The program on tape or disk does not match the program currently in
memory.

1 60

A P P E N DIX M
M USIC N OTE VALU ES

Th i s appendix conta i n s a comp lete l i s t of Note#, actual note, and the val u es
to be POKEd i nto the H I FREO and LOW FREO reg isters of the sound c h i p to
prod uce the i nd i cated note.

OSCILLATOR FREQ

MUSICAL NOTE C ycles/Sec. H IGH LOW

0 CoO 268 1 1 2

1 C#-O 284 1 28

2 0-0 301 1 45

3 0#-0 3 1 8 1 62

4 E-O 337 1 8 1

5 F-O 358 1 1 02

6 F#-O 379 1 1 23

7 G-O 4 0 1 1 1 45

8 G#-O 425 1 1 69

9 A-O 4 5 1 1 1 95

1 0 A#-O 4 7 7 1 22 1

1 1 B-O 506 1 250

1 6 C-1 536 2 24

1 7 C#- 1 568 2 56

1 8 0- 1 602 2 90

1 9 0#- 1 637 2 1 25

20 E- 1 675 2 1 63

2 1 F - 1 7 1 6 2 204

22 F#- 1 758 2 246

23 G · 1 803 3 35

24 G#- 1 851 3 83

25 A- 1 902 3 1 34

26 A#- 1 955 3 1 87

27 B- 1 1 0 1 2 3 244

32 C-2 1 07 2 4 48

33 C#-2 1 1 36 4 1 1 2

34 0-2 1 204 4 1 80

35 0#·2 1 2 75 4 25 1

36 E-2 1 35 1 5 7 1

37 F·2 1 432 5 1 52

38 F#-2 1 5 1 7 5 237

39 G·2 1 607 6 7 1

40 G#-2 1 703 6 1 6 7

4 1 A·2 1 804 7 . 1 2

42 A#-2 1 9 1 1 7 1 1 9

43 B·2 2025 7 233

48 C·3 2 1 45 8 97
�-

1 61

OSCILLATOR FREQ.

MUSICAL NOTE Cycles/Sec. HIGH LOW

49 C#·3 2273 8 225
50 D·3 2408 9 1 04
51 D#-3 2551 9 247
52 E-3 2703 1 0 1 43
53 F-3 2864 1 1 48
54 F#-3 3034 1 1 218
55 G-3 321 5 1 2 1 43
56 G#-3 3406 1 3 78
57 A-3 3608 1 4 24
58 A#-3 3823 1 4 239
59 8-3 4050 1 5 2 1 0
64 C-4 4291 1 6 1 95
65 C#-4 4547 1 7 1 95
66 D-4 481 7 1 8 209
67 D#-4 5 1 03 1 9 239
68 E-4 5407 21 31
69 F-4 5728 22 96
70 F#-4 6069 23 1 81
71 G-4 6430 25 30
72 G#-4 681 2 26 1 56
73 A-4 721 7 28 49
74 A#-4 7647 29 223
75 8-4 8 1 01 31 1 65
80 C-5 8583 33 1 35
81 C#-5 9094 35 1 34
82 D-5 9634 37 1 62
83 D#-5 1 0207 39 223
84 E-5 1 08 1 4 42 62
85 F-5 1 1 457 44 1 93
86 F#-5 1 2 1 39 47 1 07
87 G-5 1 2860 50 60
88 G#-5 1 3625 53 57
89 A-5 1 4435 56 99
90 A#-5 1 5294 59 1 90
91 8-5 1 6203 63 75
96 C-6 1 7 1 67 67 1 5
97 C#-6 1 81 88 71 12
98 D-6 1 9269 75 69
99 D#-6 204 1 5 79 1 9 1

1 00 E-6 21 629 84 1 25
1 01 F-6 229 1 5 89 1 3 1
1 02 F#-6 24278 94 214
1 03 G-6 25721 1 00 1 2 1
1 04 G#-6 27251 1 06 1 1 5
1 05 A-6 28871 1 1 2 1 99
1 06 A#-6 30588 1 1 9 1 24

1 62

OSCILLATOR FREQ.

MUSICAL NOTE Cycles/Sec. HIGH LOW

1 07 B-6 32407 1 26 1 51
1 1 2 C·7 34334 1 34 30
1 1 3 C#·7 36376 1 42 24
1 1 4 0·7 38539 1 50 1 39
1 1 5 0#·7 40830 1 59 1 26
1 1 6 E·7 43258 1 68 250
1 1 7 F·7 45830 1 79 6
1 1 8 F#·7 48556 1 89 1 72
1 1 9 G·7 5 1 443 200 243
1 20 G#·7 54502 2 1 2 230
1 21 A·7 57743 225 1 43
1 22 A#·7 61 1 76 238 248
1 23 B·7 648 1 4 253 46

FilTER SETTINGS

location Contents

54293 Low cutoff frequency (0·7)

54294 High cutoff frequency (0·255)

54295 Resonance (bits 4·7)
Fi l ter voice 3 (bit 2)
Fi lter voice 2 (bit 1)
Fi l ter voice 1 (bit 0)

54296 H ig h pass (bit 6)
Bandpass (bit 5)
Low pass (bit 4)
Volume (bits 0·3)

1 63

APPEN DIX N
BI BLIOG RAPHY

Addison-Wesley

Compute

Cow bay Computing

Creative Computing

Di l ith ium Press

" BASIC and the Personal Computer", Dwyer and
Critchf ield

"Compute's First Book of PET/CBM"

" Feed Me, I 'm Your PET Computer", Carol
Alexander

" Looki ng Good with Your PET", Carol Alexander

"Teacher's PET - Plans, Quizzes, and Answers"

"Gett ing Acquainted With Your VIC 20", T. Hartnel l

" BASIC Basic-Eng l ish Dictionary for the PET",
Larry Noonan

" PET BASIC", Tom Rugg and Ph i l Feldman

Faulk Baker Associates " MOS Programming Manual " , MOS Technology

Hayden Book Co.

Howard W. Sams

Level Ltd .

Little, Brown & Co.

McGraw-H i l i

" BASIC From t h e Ground Up", David E . Simon

" I Speak BASIC to My PET' , Aubrey Jones, J r.

" Li brary of PET Subrouti nes", Nick Hampshire

" PET Graphics", Nick Hampsh i re

" BASIC Conversions Handbook, Apple, TRS-80, and
PET", David A. Brai n , P h i l l i p R. Oviatt, Paul J .
Paq u i n , and Chandler P. Stone

"The Howard W. Sams Crash Course in
M ic rocomputers", Louis E. Frenzel, J r.

" Mostly BASIC: Appl icat ions for Your PET",
Howard Berenbon

" P ET Interfacing", James M . Downey and Steven
M . Rogers

"VIC 20 Programmer's Reference Guide", A. Finkel ,
P. H i ggi nbottom, N. Harris, and M. Tomczyk

" P rogramming the PET/CBM", Raeto West.

"Computer Games for Businesses, Schools, and
Homes", J. Victor Nagigian, and Wi l l iam S. Hodges

"The Computer Tutor: Learni n g Activit ies for
Homes and Schools", Gary W. Orwig, Un iversity of
Central Florida, and Wi l l iam S. Hodges

" Hands-On BASIC With a PET", Herbert D.
Peckman

" Home and Office Use of VisiCalc", D. Castlewitz,
and L. Chisauki

1 64

Osborne/McGraw-Hi l i "PET/CBM Personal Computer Guide", Carroll S .
Donahue

"PET Fun and Games", R. Jeffries and G. Fisher

"PET and the I EEE", A. Osborne and C. Donahue

"Some Common BASIC Programs for the PET", L.
Poole, M. Borchers, and C. Donahue

"Osborne CP/M User Guide", Thom Hogan

"CBM Professional Computer Guide"

"The PET Personal Computer Guide"

"The 8086 Book", Russell Rector and George Alexy

P. C. Publ ications "Beginning Self-Teaching Computer Lessons"

Prentice-Hall "The PET Personal Computer for Beginners", S.
Dunn and V. Morgan

Reston Publishing Co. "PET and the IEEE 488 Bus (GPIB)", Eugene Fisher
and C. W. Jensen

Telmas Courseware
Ratings

Total Information
Services

"PET BASIC - Training Your PET Computer",
Ramon Zamora, Wm. F. Carrie, and B. Albrecht

"PET Games and Recreation", M. Ogelsby, L.
Lindsey, and D. Kunkin

"PET BASIC", Richard Huskell

"VIC Games and Recreation"

"BASIC and the Personal Computer", T. A.
Dwyer, and M. Critchfield

"Understanding Your PET/CBM, Vol . 1 ,
BASIC Programming"

"Understanding Your VIC", David Schultz

Commodore Magazines provide you with the most up-to-date information for
your Executive 64. Two of the most popular publ ications that you should
seriously consider subscribing to are:

COMMODORE - The Microcomputer Magazine is publ ished bi-monthly and is
avai lable by subscription ($1 5.00 per year, U.S., and $25.00 per year, worldwide).

POWER/PLAY - The Home Computer Magazine is published quarterly and is
available by subscription ($1 0.00 per year, U.S., and $1 5.00 per year worldwide).

1 65

APPEN DIX 0
SPRITE REGISTER MAP

Register #
Dec Hex 087 D86 D85 D84 D83 082 D81 D80

0 0 SOX7 SOXO SPRITE 0 X
Component

1 1 SOY7 SOYO SPRITE 0 Y
Component

2 2 S1X7 S 1 XO SPRITE 1 X

3 3 S 1 Y7 S 1 YO SPRITE 1 Y

4 4 S2X7 S2XO SPRITE 2 X

5 5 S2Y7 S2YO SPRITE 2 Y

6 6 S3X7 S3XO SPRITE 3 X

7 7 S3Y7 S3YO SPRITE 3 Y

8 8 S4X7 S4XO SPRITE 4 X

9 9 S4Y7 S4YO SPRITE 4 Y

1 0 A S5X7 S5XO SPRITE 5 X

1 1 B S5Y7 S5YO SPRITE 5 Y

1 2 C S6X7 S6XO SPRITE 6 X

1 3 D S6Y7 S6YO SPRITE 6 Y

1 4 E S7X7 S7XO SPRITE 7 X
Component

1 5 F S7Y7 S7YO SPRITE 7 Y
Component

1 6 1 0 S7X8 S6X8 S5X8 S4X8 S3X8 S2X8 S 1 X8 SOX8 MSB of X
COORD .

. -
1 7 1 1 RC8 ECM BMM BLNK RSEL YSCL2 YSCL1 YSCLO Y SCROLL

MODE

1 8 1 2 RC7 RC6 RC5 RC4 RC3 RC2 RC1 RCO RASTER
_

1 9 1 3 LPX7 LPXO LIGHT PEN X
. __ . . -

20 1 4 LPY7 LPYO LIGHT PEN Y

1 66

Register 1/
Dec Hex D87 D86 D85 D84 D83 D82 D81 D80
21 1 5 SE7 SE� SPRITE

ENABLE
(ON/OFF)

22 1 6 N.C. N.C. RST MCM CSEL XSCL2 XSCL1 XSCLO X SCROLL
MODE

23 1 7 �EXY7 SEXYO SPRITE
EXPAND Y

24 1 8 VS13 VS12 VS1 1 VS10 CB13 CB12 CB1 1 N.C. SCREEN
Character

Memory
25 19 IRQ N.C. N.C. N.C. LPIRQ ISSC ISBC RIRQ Interupt

Request's
26 1 A N.C. N.C. N.C. N.C. MLPI �ISSC MISBC MRIRQ Interupt

Request
MASKS

27 1 B BSP7 BSPO Background-
Sprite

PRIORITY

28 1 C SCM7 SCMO Multicolor
SPRITE
SELECT

29 1 0 SEXX7 SEXXO SPRITE
EXPAN D X

30 1 E SSC7 SSCO Sprite·Sprite
COLLISION

31 1 F SBC7 SBCO Sprite-
- , Background

COLLISION

Register 1/ Register 1/
Dec Hex Color Dec Hex Color

32 20 BORDER COLOR 39 27 SPRITE 0 COLOR

33 21 BACKGROUND 40 28 SPRITE 1 COLOR
COLOR 0

41 29 SPRITE 2 COLOR
34 22 BACKGROU N D

COLOR 1 42 2A SPRITE 3 COLOR

35 23 BACKGROU N D 43 2B SPRITE 4 COLOR
COLOR 2 44 2C SPRITE 5 COLOR

36 24 BACKGROU ND
COLOR 3

45 2D SPRITE 6 COLOR

37 25 SPRITE
46 2E SPRITE 7 COLOR

M U L TICOLOR 0
38 26 SPRITE

M U LTICOLOR 1

1 67

COLOR CODES

Dec Hex Color Dec Hex Color

0 0 BLACK 8 8 ORANGE

1 1 WHITE 9 9 BROWN

2 2 RED 10 A LT. RED

3 3 CYAN 1 1 B GRAY 1

4 4 PURPLE 1 2 C G RAY 2

5 5 GREEN 13 0 LT. GREEN

6 6 BLUE 1 4 E LT. BLUE

7 7 YELLOW 15 F GRAY 3

LEGEND
ONLY COLORS CH MAY BE USED IN MULTICOLOR CHARACTER MODE

1 68

APPEN DIX P
6566/6567 (VIC-I I) CH I P REGISTER MAP

The 656616567 are mult i-purpose color video contro l ler devices f o r use i n
both computer video terminals and video game app l i cations. Both devices co!",
tain 47 control reg isters which are accessed via a standard 8-bit m icro
processor bus (65XX) and wi l l access up to 16K of memory for d isplay i nforma
t ion. The various operating modes and options within each mode are described.

ADOIUS DI7 DI6 DI5 DI4 DI3 DI2 DI I DIO DUCIII'TION

00 (SOlI) MOX7 MOX6 MOX5 MOU MOX3 MOX2 MOX I MOXO MOl 0 X-polition

0 1 ($01) MOY7 MOY6 MOY5 MOY� MOY3 MOY2 MOYI MOYO MOl 0 Y -polition

02 ($02) M I X7 M I X6 M I X5 M I X� M I X3 M I X2 M I X I M I XO MOB I X·polition

03 ($03) M I Y7 M I Y6 M I Y5 M I Y4 M I Y3 M I Y2 M I Y I M I YO MOB I Y-polition

a. (�) M2X7 M2X6 M2X5 M2X� M2X3 M2X2 M2XI M2XO MOil 2 X-polition

05 ($05) M2Y7 M2Y6 M2Y5 M2Y� M2Y3 M2Y2 M2YI M2YO MOB 2 Y -polition

06 ($06) M3X7 M3X6 M3X5 M3X� M3X3 M3X2 M3XI M3XO MOB 3 X-polition

07 ($On M3Y7 M3Y6 M3Y5 M3Y� M3Y3 M3Y2 M3YI M3YO MOB 3 Y -polition

08 ($011) M�X7 M�X6 �X5 M�X� M4X3 �X2 M4XI M�XO MOB � X-polition

09 ($09) M�Y7 M�Y6 �Y5 M4Y� M�Y3 M4Y2 M�YI M�YO MOl .. Y·polition

1 0 ($CA) M5X7 M5X6 M5X5 M5U M5X3 M5X2 M5X I M5XO MOB 5 X-polition

1 1 ($OB) M5Y7 M5Y6 M5Y5 M5Y� M5Y3 M5Y2 M5YI M5YO MOil 5 Y -Polition

1 2 ($OC) M6X7 M6X6 M6X5 M6X4 M6X3 M6X2 M6X I M6XO MOB 6 X·po.ition

1 3 ($OD) M6Y7 M6Y6 M6Y5 M6Y� M6Y3 M6Y2 M6YI M6YO MOB 6 Y-polition

I � ($Of) M7X7 M7X6 M7X5 M7X� M7X3 M7X2 M7XI M7XO MOB 7 X·polition

I S ($OF) M7Y7 M7Y6 M7Y5 M7Y� M7Y3 M7Y2 M7YI M6YO MOB 7 Y -polition

1 6 ($ 1 0) M7Xa M6Xa M5Xa M�Xa M3Xa M2Xa M I xa Moxa MSB of X-polition

1 7 ($ 1 1) Rca ECM BMM DEN RSEl Y2 YI YO S •• text

1 1 ($ 1 2) RC7 RC6 RC5 RC� RC3 RC2 R C I RCO Rast., regi,t.'

1 9 ($ 1 3) lPxa lPX7 lPX6 lPX5 lPX4 lPX3 lPX2 lPXI light Pen X

20 ($ I �) lPY7 lPY6 lPY5 lPY� lPY3 lPY2 lPYI lPYO light Pen Y

2 1 ($ 1 5) M7E M6E MSE M4E M3E M2E M I E MOE MOB Enoble

22 ($ 1 6) - - RES MCM CSEl X 2 X I XO S •• tex'

23 ($ 1 7) M7YE M6YE MSYE M4YE M3YE M2YE M I YE MOYE MOB Y-e.pand

2� ($ I B) VM I 3 VM I 2 VMl l VM I O C B I 3 CB I 2 C B l l - Memory Poin,ers

25 ($ 1 9) IRQ - - - IlP IMMC IMBC IRST Interrupt Regilt.,

26 (S I A) - - - - UP EMMC EMBC ERST Enable Interrupt

27 (S I B) M70P M60P MSOP M�OP M30P M20P M I OP MOOP MOB-DATA P"o"ty

2B (S I C) M7MC M6MC M5MC M�MC M3MC M2MC M I MC MOMC MOe Multicolor Sel

29 (S I D) M7XE M6XE M5XE M4XE M3XE M2XE M I XE MOXE MOB X·expand

30 ($ I E) M7M M6M M5M M�M M3M M2M M I M MOM MOB-MOB Colli.ion

3 1 ($ I F) M70 M60 MSO M�O M30 M20 M I D MOD MOB·OATA ColI;.;on

32 ($20) - - - - EC3 EC2 ECI ECO Ext.rior Color

33 ($2 1) - - - - BOC3 BOC2 BOCI BOCO Bkgd #0 Color

34 ($22) - - - - B I C3 B I C2 B I C I B I CO Bkgd # I Color

35 (S23) - - - - B2C3 B2C2 B2C I B2CO Bkgd #2 Color

36 (S24) - - - - B3C3 B3C2 B3C I B3CO Bkgd #3 Color

37 (S2S) - - - - MM03 MM02 MMOI MMOO MOB Multicolor *0

3B (S26) - - - - MM I 3 MM I 2 MM I I M M I O MOB Muhicolor 11 1
39 (S27) - - - - MOC3 MOC2 MOCI MOCO MOB 0 Color

40 (S2B) - - - - M I C3 M I G M I C I M I CO MOB I Color

�I (S29) - - - - M2C3 M2C2 M2CI M2CO MOB 2 Color

42 ($2A) - - - - M3C3 M3C2 M3C I M3CO MOB 3 Color

43 ($2B) - - - - MK3 MK2 M K I MKO MOB 4 Color

44 ($2C) - - - - M5C3 M5C2 MSC l MSCO MOB S Color

45 (S20) - - - - M6C3 M6C2 M6C 1 M6CO MOB 6 Color

46 ($lE) - - - - M7C3 M7C2 M7CI M7CO MOB 7 Color

[NOTt: A do,i'! ,ndica'.' Q "O (o"nK', All "0 CO
_
"
_
"O<

_
"

_
O
_

' O
_

'
_
OO
_

"
_

O
_

'
_

O
_

'
_

"
_

'
_________________ ---'

1 69

APPENDIX Q
COMMODORE 64
SOUND CONTROL SETTINGS

This handy table g ives you the key numbers you need to use in your sound
programs, according to which of the 64's 3 voices you want to use. To set or ad
just a sound control in your BASIC program, just POKE the number from the se
cond column, followed by a comma (,) and a number from the chart . . . l ike this:
POKE 54276,1 7 (Selects a Triangle Waveform for VOICE 1).

Remember that you must set the VOLUME before you can generate sound.
POKE54296 fol lowed by a number up to 15 to set the volume for all 3 voices.

It takes 2 separate POKEs to generate each musical note. For example
POKE54273,33:POKE54272,1 35 designates low C in the sample scale below.

Also, you aren't l imited to the numbers shown in the tables. If 33 doesn't
sound "right" for a low C, try 34. To provide a higher SUSTAIN or ATTACK rate
than those shown, add two or more SUSTAIN numbers together. (Examples:
POKE54277,96 combines two attack rates (32 and 64) for a combined higher at
tack rate, POKE54277,20 provides a low attack rate (16) and a medium decay
rate (4).

1 70

SETTING VOLUME - SAME FOR ALL 3 VOICES
VOLUME CONTROL I POKE54296J Settings range from 0 (off) to 15 (loudest)

VOICE NUMBER 1

TO CONTROL POKE THIS
THIS SETIING: NUMBER:

TO PLAY A NOTE

HIGH FREQUENCY 54273

LOW FREQUENCY 54272

WAVEFORM POKE

54276

PULSE RATE (Pulse Waveform)

HI PULSE 54275
LO PULSE 54274

ATIACKIDECAY POKE

54277

SUSTAIN/RELEASE POKE
54278

VOICE NUMBER 2

TO PLAY A NOTE

HIGH FREQUENCY 54280

LOW FREQUENCY 54279

WAVEFORM POKE

54283

PULSE RATE (Pulse Waveform)

HI PULSE 54282
LO PULSE 54281

ATIACKIDECAY POKE

54264

SUSTAIN/RELEASE POKE
54285

VOICE NUMBER 3

TO PLAY A NOTE

HIGH FREQUENCY 54287

LOW FREQUENCY 54286

WAVEFORM POKE

54290

PULSE RATE (Pulse Waveform)

HI PULSE 54289
LO PULSE 54288

ATIACKIDECAY POKE

54291

SUSTAIN/RELEASE POKE
54292

FOLLOWED BY ONE OF THESE NUMBERS
(0 to 1 5 . . . or . . . 0 to 255 depending on range)

C GIl D 0. E F F. G 0. A A. B

33 35 37 39 42 44 47 50 53 56 59 63

135 1 34 162 223 62 193 107 60 57 99 190 75

TRIANGLE SAWTOOTH PULSE NOISE

17 33 65 129

A value of 0 to 15 (for Pulse waveform only)
A value of 0 to 255 (for Pulse waveform only)

ATK4 ATK3 ATK2 ArKl DEC4 DEC3 DEC2 DEC 1

128 64 32 16 8 4 2 1

SUS4 SUS3 SUS2 SUSI REL4 REL3 REL2 REL1
128 64 32 16 8 4 2 1

C GIl D 0. E F F. G G. A A. B

33 35 37 39 42 44 47 50 53 56 59 63

1 35 134 162 223 62 193 107 60 57 99 190 75

TRIANGLE SAWTOOTH I PULSE NOISE

17 33 I 65 129

A value of 0 to 15 (for PuiS£: waveform only)
A value of 0 to 255 (for Pulse waveform only)

ATK4 ATK3 ATK2 ATKI DEC4 DEC3 DEC2 DECI

128 64 32 16 8 4 2 1

SUS4 SUS3 SUS2 SUSI REL4 REL3 REL2 REL1
128 64 32 16 8 4 2 1

C GIl D 0. E F F. G G. A A. B

33 35 37 39 42 44 47 50 53 56 59 63

135 134 162 223 62 193 107 60 57 99 190 75

TRIANGLE SAWTOOTH PULSE NOISE

1 7 33 65

A value of a to 15 (for Pulse waveform only)
A value of 0 to 255 (for Pulse waveform only)

ATK4 ATK3

128 64

SUS4 / SUS3
128 64

1 71

ATK2 ATKI

32 16

SUS2 SUSI
32 16

DEC4 DEC3 DEC2

8 4 2

REL4 REL3 REL2
8 4 2

129

DECI

1

RELI
1

TRY THESE SETTINGS TO SIMULATE DIFFERENT INSTRUMENTS

Instrument Wavefonn

Piano Pulse
Flute Triangle
Harpsichord Sawtooth
Xylophone Triangle
Organ Triangle
Coll iape Triangle
Accordian Triangle
Trumpet Sawtooth

MEANI NGS OF SOUND TERMS
ADSR - Attack/Decay/Sustain/Release
Attack - rate sound rises to peak volume

Attack/Decay

9
96

9
9
0
0

102
96

Decay - rate sound falls from peak volume to sustain level
Sustain - prolong rate at certain volume level
Release - rate at which volume falls from sustain level
Waveform - "shape" of sound wave
Pulse - tone quality of Pulse Waveform

Sustain/Release Pulse Rate

0 Hi-O. Lo-255
0 Not applicable
0 Not applicable
0 Not applicable

240 Not applicable
240 Not applicable

0 Not applicable
0 Not applicable

NOTE: Attack/Decay and Sustain/Release settings should always be POKEd in your program BEFORE
the Waveform is POKEd.

1 72

APPEN DIX R
6581 SOU N D I NTERFACE DEVICE (SI D)
CHIP SPECI FICATIONS

CONCEPT
The 6581 Sound I nterface Device (SI D) is a s ing le-ch ip, 3-voice electron ic

mus ic synthesizer/sound effects generator compat ible w i th the 651 0 and
simi lar microprocessor fami l ies. SID provides wide-range high-resolution con
trol of pitch (frequency), tone color (harmonic content), and dynamics (volume).
Special ized control c ircuitry min imizes software overhead, faci l itating use in ar
cade/home video games and low-cost musical instruments.

FEATU RES

• 3 TON E OSCILLATORS
Range: 0-4 kHz

• 4 WAVEFORMS PER OSCILLATOR
Triangle, Sawtooth,
Variable Pulse, Noise

• 3 AMPLITUDE MODULATORS
Range: 48 dB

• 3 ENVELOPE GENERATORS
Exponential response
Attack Rate: 2 ms-B s
Decay Rate: 6 ms-24 s
Sustain Level: O-peak volume
Release Rate: 6 ms·24 s

• OSCILLATOR SYNCHRON IZATION
• RING MODULATION

DESCRIPTION

The 6581 consists of three synthesizer "voices" which can be used in
dependently or in conjunction with each other (or external aud io sources) to
create complex sounds. Each voice consists of a Tone Osci l iatorlWaveform
Generator, an Envelope Generator and an Amplitude Modulator. The Tone
Osci l lator controls the pitch of the voice over a wide range. The Osci l lator pro
duces four waveforms at the selected frequency, with the un ique harmonic con
tent of each waveform providing simple control of tone color. The volume
dynamics of the osc i l lator are controlled by the Ampl itude Modulator under the
d irection of the Envelope Generator. When triggered, the Envelope Generator
creates an ampl itude envelope with programmable rates of increasing and
decreasing volume. In addition to the three voices, a programmable Fi lter is pro
vided for generating complex, dynamic tone colors via subtractive syntheses.

S ID allows the microprocessor to read the changing output of the third
Osci l lator and third Envelope Generator. These outputs can be used as a
source of modulation information for creating vibrato, frequency/fi lter sweeps
and simi lar effects. The third osc i l lator can also act as a random number
generator for games. Two AID converters are provided for interfacing SID with
potentiometers. These can be used for "paddles" in a game environment or as
front panel controls in a music synthesizer. S ID can process external audio
signals, allowing multiple SID chips to be daisy·chained or mixed in complex
polyphonic systems.

1 73

A
D

D
R

ES
S

RE

G
.

A
,

A
,

A
,

A
,

A
O

IH
E X

)
0,

0,

 .
0

0
0

0
0

00

0
0

01

I-
-�

 f-
-

F
,

F
"

F

,.

02

03

e-!
W

,
pw

.
-

O'

N
O

IS
E

rtJL

05

06

A
TK

)
�

,
f

-
-

S
TN

)
S

TN
2

0·,
F,

F.

08

F

"
F

,.

09

PW
,

PW
.

10

OA

-
-

11

OS

N
O

IS
E

rtJL

12

OC

A
TK

)
A

TK
2

13

00

S
TN

J _

S
TN

,

..
....

�

14

OE

F,

F.

'5

O
F

F"

F
,.

'6

'0

PW
,

PW
.

17

11

-

18

12

N
O

IS
E

rtJL

19

13

A
TK

)
A

TK
2

20

14

�

S
TN

2

21

15

-
-

22

16

F e
lO

FC
g

23

17

R
ES

,
R

ES
2

2'

18

3
O

FF

H
P

25

19

P
X,

P

X.

26

lA

P
Y,

PY

.

27

IS

0
,

O
.

28

IC

E,

E.

Os
 .

F,

F"

P
W

,
-

/'V1

A
TK

,

S
TN

,

F,

F"

PW
,

/'V1

A
TK

,
S

TN
,

F,

F"

P
W

,

/'V1

A
TK

,
S

TN
,

- FC
.

R
ES

,

SP

P
X

,

P
Y

,
0

,
E,

D
A

TA

D
4

03

F.

"
F"

F"

PW
.

PW
,

-
PW

11

/".,A

TE
S

T
A

TK
�

D
C

Y,

S
TN

O
R

LS
,

F,

F,

F"

F"

PW
.

PW
,

PW
11

/".,A

TE

S
T

A
TK

o
D

C
Y)

S

TN
O

R
LS

J

F.

F,

F
"

F

"

PW
,

PW
,

PW
11

/".,A

TE

S
T

A
TK

a
D

C
Y,

S
TN

o
A

LS
,

-
-

FC
,

FC
.

-

R
ES

o
Fl

LT
EX

LP

VO

L,

P
X.

PX

,

PY
,

P
Y,

O

.
0,

E.

E

,

o
0

, .
-,

. 0 0

F,

F,

F O

F
�;

--
Fg

F.

PW
,

pv"

PW
o

PW
,O

PW
g

�

.�

S
YN

C

G
A

TE

D
C

Y
,

D
C

Y
,

D
C

YO

R
LS

2
R

lS
,

A
LS

O

F,

F,

. �

F
lO

Fg

F.

PW
,

PW
,

PW
O

P
W

,o

PW
g

pw
.

��
�

S
YN

C

G
A

TE

D
C

Y,

D
C

Y,

o
e

yo

A
LS

,
R

lS
,

R
LS

o

F,

F,

Fo

F
lO

Fg

F.

PW
,

PW
,

PW
o

�W
lO

PW
g

PW
.

�:;
�

S
YN

C

G
A

TE

D
C

Y,

D
C

Y,

D
C

Yo

AL
S2

R

lS
,

A
LS

o

FC
,

FC
,

FC
o

FC
,

FC
,

FC
,

Fl
LT

 3

FI
Ll

 2

FI
Ll

 1

VO
L2

VO

L,

VO
la

PX
,

P
X

,
P X

o

P
Y,

P

Y,

P
Yo

0,

0,

0 0

E,

E,

Eo

RE
G

 N
A

M
E

RE
G

Vo

ic
e

1
TY

PE

FR
ED

 L
O

W

R
IT

E·
O

N
lY

FR

EO
 H

I
W

R
IT

E·
O

N
LY

PW
 L

O

W
R

IT
E·

O
N

LY

PW
H

I
W

R
IT

E·
O

N
LY

C
O

N
TR

O
L

R
EG

W

R
IT

E·
O

N
LY

A
 TT

 A
C

K
ID

EC
A

 Y
W

R
IT

E-
O

N
LY

S
U

S
TA

IN
/R

EL
EA

S
E

W
R

IT
E·

O
N

LY

Vo
ic

e
2

FR
ED

 L
O

W

R
IT

E·
O

N
LY

FR
ED

 H
I

W
R

IT
E·

O
N

LY

PW
 L

O

W
R

IT
E·

O
N

LY

PW
 H

I
W

R
IT

E·
O

N
LY

C
O

N
TR

O
L

R
EG

W

R
IT

E·
O

N
LY

A
 T

T A
C

K
ID

EC
A

Y
W

R
IT

E·
O

N
LY

S
U

S
TA

IN
/R

EL
EA

S
E

W
R

IT
E·

O
N

LY

Vo
ic

.
3

FR
EO

 L
O

W

R
IT

E·
O

N
lY

FR
EO

 H
I

W
R

IT
E·

O
N

LY

P
W

 L
O

W

R
IT

E·
O

N
LY

P
W

 H
I

W
R

IT
E·

O
N

LY

C
O

N
TR

O
L

R
EG

W

R
IT

E·
O

N
LY

A
 TT

 A
C

K
/D

EC
A

 Y
W

R
IT

E-
O

N
LY

S
U

S
TA

IN
/R

EL
EA

S
E

W
R

IT
E·

O
N

LY

Fi
lle

r
FC

 L
O

W

R
IT

E·
O

N
LY

FC
 H

I
W

R
IT

E·
O

N
LY

R
ES

/F
iL

T
W

R
IT

E·
O

N
LY

M
O

D
EI

V
O

l
W

R
IT

E-
O

N
LY

M
is

c.

PO
T

X
R

EA
D

-O
N

LY

P
O

T
Y

R
E

A
D

·O
N

LY

O
S

C
,/

R
A

N
D

O
M

R

EA
D

·O
N

LY

EN
V

J
R

EA
D

·O
N

LY

at

cr

;- !!
!

C

:IV

C1>

CO
 iii'

..

C1>

"
 �

C

'0

-
L-l

1Il

=r

tT
eD

-l

-
ClJ

=r

eD
eD

eD

..
...

..
.

•
..

.
eD

�

111
(ij'

@ ��

ClJ
eD

�

 cO
'

eD
;:?;

eD

CT

::.
::.

=r

 ..
.

eD
eD

"'

co

:E
ie:

:O

eD

-
..

.
-l

CIJ

m
-

'

6
 ::J

::J

(f)

-<"
0

O

�

"'
=r

:0

 ,
r

m
=r

»

0

0
0

6

�

2.
(3

'<

-
Il

l
..

...
::J

=r

a.
eD

CO

lIl

eD

@
fjl

=
ii3

CIJ

..

...
<D

 O
·

a.
::J

g
Q.

-

CIJ

0
0

�

 C

::J

_
.

a.

::J
.

�

C

0

0

Z

�

:J
J

0

r- :J
J

m

G')

en

�

m

:J
J

en

APPEN DIX S
DISK and PRINTER COMMAN DS and
STATEMENTS

The following BASIC commands and statements let you perform a variety of
operations on disk drives and any compatible Commodore printer.

CLOSE

TYPE: UO Statement
FORMAT: CLOSE < file number >

Action: This statement shuts off any data file or channel to a device. The fi le
number is the same as when the f i le or device was OPENed (see OPEN state
ment and the section on INPUT/OUTPUT programming).

When working with storage devices l i ke disks, the CLOSE operation stores
any incomplete buffers to the device. When this is not performed, the f i le wil l
be unreadable on the disk. The CLOSE operation isn't as necessary with other
devices, but it does free up memory for other files. See your external device
manual for more details.

EXAMPLES of CLOSE Statement

10 CLOSE 1
20 CLOSE X
30 CLOSE 9 * (1 + J) .

CM D

TYPE: I/O Statement
FORMAT: CMD < file number > Lstring]

Action: This statement switches the primary output device from the TV
screen to the fi le specified. This f i le could be on disk, printer, or an I/O device
l ike the modem. The file number must be specified in a prior OPEN statement.
The string, when specified, is sent to the fi le. This is handy for tit l ing printouts,
etc.

When this command is in effect, any PRINT statements and LIST commands
wi l l not display on the screen, but will send the text in the same format to the
fi le.

To re-direct the output back to the screen, the PRINT# command should send
a blank l ine to the CMD device before CLOSEing, so it wi l l stop expecting data
(cal led "un-listening" the device).

Any system error (l i ke ?SYNTAX ERROR) wil l cause output to return to the
screen . Devices aren't u n-listened by this, so you should send a blank l ine
after an error condition_ (See your printer or d is k manual for more detai ls.)

1 75

EXAMPLES of CMD Statement:

OPEN 4, 4: CMD 4, "TITLE" : LIST: REM LISTS PROGRAM ON
PRINTER

. PRINTI 4: CLOSE 4: REM UN-LISTENS AND CLOSES PRINTER

10 OPEN 1 , 8, 4, "TEST" : REM CREATE SEa FILE
20 CMD 8: REM OUTPUT TO TAPE FILE, NOT SCREEN
30 FOR L = 1 TO 100
40 PRINT L: REM PUTS NUMBER IN DISK BUFFER

50 NEXT .-
60 PRINTI 1 : REM UNLISTEN
70 CLOSE 1: REM WRITE UNFINISHED BUFFER, PROPERLY

FINISH

GET##

TYPE: UO Statement
FORMAT: GET' <file number> , < variable list >

Action: This statement reads characters one-at-a-t ime from the device or fi le
specified_ It works the same as the GET statement, except that the data comes
from a different place than the keyboard. If no character is received, the variable
is set to an empty string (equal to ' ' ' ') or to 0 for numeric variables. Characters
used to separate data in fi les, l ike the comma (,) or III!IiIlI key code (ASC code
of 1 3), are received l ike any other character.

When used with device #3 (TV screen), this statement w i l l read characters
one by one from the screen. Each use of GET# moves the cursor 1 position to
the right The character at the end of the logical l ine is changed to a CHR$ (13),
the _ key code.

EXAMPLES of GET# Statement

5 GET# 1 , A$
10 OPEN 1 , 3: GET# 1 , Z7$
20 GET' 1 , A, B, C$, 0$

1 76

INPUT#

TYPE: 1/0 Statement
FORMAT INPUTH < file number> , < variable list >

Action: This is usually the fastest and easiest way to retrieve data stored in a
f i le on d isk. The data is in the form of whole variables of up to 80 characters in
length, as opposed to the one-at-a-t ime method of G ET#. First, the file must
have been OPENed, then IN PUT# can f i l l the variables.

The IN PUT# command assumes a variable is f in ished when it reads a
RETURN code (CH R$(1 3)), a comma (,), semicolon (;), or colon(:). Quote marks
can be used to enclose these characters when writ ing if they are needed (See
PRINT# statement).

If the variable type used is numeric, and non-numeric characters are received,
a BAD DATA error resu lts. INPUT# can read strings up to 80 characters long,
beyond which a STRING TOO LONG error resu lts.

When used with device #3 (the screen), this statement wi l l read an enti re
logical l ine and move the cursor down to the next l ine.

EXAMPLES of I NPUTH Statement:

1 0 INPUT# 1 , A
20 INPUT# 2, A$, B$

LOAD

TYPE: Command
FORMAT LOAD " < file-name> " , < device > [, < address >]

Action: The LOAD statement reads the contents of a program fi le from d isk
into memory. That way you can use the information LOADed or change the in
formation in some way. The d isk unit is normally device number 8. The LOAD
closes al l open fi les and, if it is used in direct mode, it performs a CLR (clear)
before read ing the program. If LOAD is executed from within a program, the
program is RUN. This means that you can use LOAD to "chain" several pro
grams together. None of the variables are cleared during a chain operation.

I f you are using fi le-name pattern matching, the first fi le which matches the
pattern is loaded. The asterisk in quotes by itself (" * ") causes the f irst f i le-name
in the disk directory to be loaded. If the f i le-name used does not exist or if it is
not a program fi le, the BASIC error message ?FILE NOT FOUND occurs.

If you use the secondary address of 1 this wi l l cause the program to LOAD to
the memory location from which it was saved.

EXAMPLES of LOAD Command:

LOAD A$,8

LOAD "· ",8

LOAD "$",8

LOAD "FUN",8
SEARCHING FOR FUN
LOADING
READY.

LOAD "GAME ONE",8,1
SEARCHING FOR GAME ONE
LOADING
READY.

(Uses the name in A$ to search)

(LOADs first program from disk)

(LOADs disk directory)

(LOAD a file from disk)

(LOAD a file to the specific memory
location from which the program was
saved on the disk)

177

OPEN

TYPE: UO Statement
FORMAT: OPEN (file-num) , (device) [, (address)] [," (file-name)
[, (type)] [, (mode) 1'1

Action: This statement OPENs a channel for input and/or output to a
peripheral device. However, you may NOT need all those parts for every OPEN
statement. Some OPEN statements require only 2 codes:

1) LOGICAL FILE NUMBER
2) DEVICE NUMBER

The (fi le-num) is the logical f i le number, which relates the OPEN, CL�SE,
CMD, GET#, INPUT#, and PRINT# statements to each other and associates
them with the f i le-name and the piece of equipment being used. The logical f i le
number can range from 1 to 255 and you can assign it any number you want in
that range.

NOTE: File numbers over 128 were really designed for other uses so it's good
practice to use only numbers below 127 for file numbers.

Each peripheral device (printer, d isk drive) in the system has its own number
which it answers to. The (device) number is used with OPEN to specify on
which device the data f i le exists. Peripherals l ike disk drives or printers also
answer to several secondary addresses. Think of these as codes which tel l
each device what operation to perform. The device logical f i le number is used
with every GET#, I NPUT#, and PRINT#.

The fi le-name can also be left out, but later on in your program you can NOT
cal l the f i le by name if you have not already g iven it one.

For d isk f i les, the secondary add resses 1 thru 14 are avai lable fordata-files,
but other numbers have spec ial meanings in DOS commands. You must use a
secondary address when using you r d isk d rive(s). (See your d isk d rive manual
for DOS command detai ls.)

The (f i le-name) is a string of 1 -16 characters and is optional for printer
fi les. If the file (type) is left out the type of f i le wi l l automatically default to
the Program fi le un less the mode is given. Sequential f i les are OPENed for
read ing (. mode) = R un less you specify that fi les shou ld be OPENed for
writ ing (mode) = W is specif ied. A f i le (type) can be used to OPEN an ex
isting Relative f i le. Use REL for (type) with Relative fi les. Relative and Se
quential fi les are for d isk only.

If you try to access a f i le before it is OPENed the BASIC error message ?FILE
NOT OPEN wi l l occur. I f you try to OPEN a f i le for reading which does not exist
the BASIC error message ?FILE NOT FOUN D wi l l occur. I f a file is OPENed to
d isk for writing and the fi le·name already exists, the DOS error message FILE
EXISTS occurs. If a file is OPENed that is al ready OPEN, the BASIC error
message FILE OPEN occurs. (See Printer Manual for further detai ls.)

1 78

EXAMPLES of OPEN Statements:

10 OPEN 2, 8, 4 "DISK-OUTPUT,
SEQ,W"

10 OPEN SO, °

10 OPEN 12, 3

10 OPEN 130, 4

10 OPEN 1 ,2,0, CHRS(10)

10 OPEN 1 ,4,0, "STRING"

10 OPEN 1 ,4,7, "STRING"

10 OPEN 1 ,5,7, "STRING"

10 OPEN 1 ,8,1 5, "COMMAND"

10 OPEN 1 ,8,1, "NAME,L" +
CHRS(X)

10 . 0PEN, 1 ,8,1,"NAME"

PRINT#

TYPE: I/O Statement

(Opens sequential file on disk) -
For Write

(Keyboard input)

(Screen output)

(Printer output)

(Open channel to RS·232 device)

(Send upper case/graphics to the
printer)

(Send upper/lower case to printer)

(Send upper/lower case to printer
with device #5)

(Send a command to disk)

(Relative file OPEN (1 st time) where
X is the length of the relative record)

(Relative or sequential read)

FORMAT: PRINT# < file· number > « variable> I (< J; > < variable> I··.
Actions: The PRINT# statement is used to write data items to a logical fi le. It

must use the same number used to OPEN the file. Output goes to the device
number used in the OPEN statement. The < variable> expressions in the
output-list can be of any type. The punctuation characters between items are
the same as with the PRINT statement and they can be used in the same way.
The effects of punctuation are different in two signif icant respects.

If no punctuation f in ishes the l ist, a carriage-return and a l ine-feed are written
at the end of the data. If a comma or semicolon terminates the output-list, the
carriage-return and l ine-feed are suppressed. Regard less of the punctuation,
the next PRINT# statement begins output in the next avai lable character posi
tion. The l ine-feed wi l l act as a stop when using the I NPUT# statement, leaving
an empty variable when the next I N PUT# is executed. The l ine-feed can be sup
pressed of compensated for as shown in the examples below.

The easiest way to write more than one variable to a f i le on disk is to set a str
ing variable to CHR$(13), and use that string in between al i the other variables
when writing the fi le.

1 79

EXAMPLES of PRINT# Statement

1)

2)

3)

10 OPEN 1 ,8,4, "MY FILE"
20 R$ = CHR$(13)
30 PRINT# 1 ,1 ;R$;2;R$;3;R$;4;R$;5
40 PRINT# 1 ,6
50 PRINT# 1 ,7

10 CO$ = CHR$(44): CR$ = CHR$(1 3)
20 PRINT# 1 , "AAA"CO$"BBB",

"CCC";"DDD";"EEE"CR$
"FFF"CR$;

30 INPUT#1 , A$,BCDE$,F$

5 CR$ = CHR$(13)
10 PRINT#2, "AAA";CR$;"BBB"
20 PRINT#2, "CCC";

30 INPUT#2, A$,B$,DUMMY$,C$

SAVE

TYPE: Command

(By Changing the CHR$(13) to
CHR$(44) you put a "," between each
variable. CHR$(59) would put a ";"
between each variable.)

AAA,BBB CCCDDDEEE
(carriage return)
FFF(carriage return)

(10 blanks)AAA
BBB
(10 blanks) CCC

FORMAT: SAVE " < file·name) " , < device·number > I, (address) I

Action: The SAVE command is used to store the program that is currently in
memory onto a diskette f i le. The program being SAVEd is only affected by the
command whi le the SAVE is happening. The program remains in the current
computer memory even after the SAVE operation is completed unti l you put
something else there by using another command. The f i le type wi l l be "prg"
(program). The SAVE statement can be used in your programs and execution
wi l l continue with the next statement after the SAVE is completed.

When saving programs onto a d isk, the (f i le·name) must be present.

EXAMPLES of SAVE Command:

SAVE "FUN DISK",8

SAVE AS,8

(SAVES on disk (device 8 is the disk»

(Store on disk with the name AS)

1 80

SAVE and REPLACE

TYPE: Command
FORMAT: SAVE " @ O: <fi le-name> " , <device-number>

Action: This version of the SAVE command is used to overwrite an eXisting file
or program on d isk. Saving a program with the normal version of the SAVE
command wi l l not store the program if the name used already exists, although no
disk error is indicated .

EXAMPLE of SAVE and R E P LACE

SAVE " @ O : ME ", 8 (Overwrites "ME" on disk with update version)

VERIFY

TYPE: Command
FORMAT: VERIFY " (file-name) " , (device)

Action: The VERIFY command is used, in di rect or program mode, to com
pare the contents of a BASIC program f i le on disk with the program currently in
memory. VERIFY is norlTlally used right after a SAVE, to make sure that the pro
gram was stored correctly on tape or d isk.

For d isk f i les (device number 8), the f i le-name must be present. I f any dif
ference in program text are found, the BASIC error message ?VERIFY ERROR
is d isplayed.

A program name can be g iven either i n quotes ("") or as a string variable.

EXAMPLE of VERIFY Command:

9000 SAVE "ME",8
9010 VERIFY "ME",8 (Looks at device 8 for the program)

1 8 1

1 82

INDEX

A

Abbreviations. BASIC COMMANDS. 28. 141-142
Accessories. 12-14

Addition. 27
AND operator. 129
Animation. 47-48. 69
Arithmetic. Operators. 27-28.129
Arithmetic. Formulas. 151
Arrays. 108
ASC function. 139

ASCII character codes. 146-148

B

BASIC
abbreviations. 28. 141-142
commands. 129-132

numeric functions. 27-29. 138-139
operators. 129
other functions. 140
string functions. 139-140
variables. 38-40. 128

Bibiliography. 164-165
Binary arithmetic. 73-75
Bit. 73
Business aids. 117-120
By1e.73

C

Calculations. 27-31
Cartridge slot. 2-3
Cassette unit. 5
Cassette port. 2
CHR$ codes. 63.139.146-148
CHR$ function. 139
CLR statement. 132
CLR. HOME key. 19
Clock. 128-129
CLOSE statement. 23, 132, 175
Color

adjustment. 10-11
keys. 20-21

memory map. 68. 149
PEEKS and POKES.
screen and border, 65, 66

Commands. BASIC, 129-132
Commodore key (see graphics keys). 20

Connections,
optional, 5-7
rear. 2
TV/Monitor. 2. 6

CONT command. 129

184

ConTRol key, 20
COSine function, 138
CuRSoR keys, 18
Correcting errors, 18-19
Cursor, 10

o

Data, loading and saving (disk), 22-24
DATA statement, 104, 133
Decay, 93
DEFine statement, 133

DElete key, 18
DIMension statement, 109, 133
Directory, 24
Disk drives

commands, 17-24, 175-181

error messages, 159-160
Division, 27

Duration (see For. .. Next), 41

E

Editing programs, 21-24, 37, 64
END statement, 134

Equal, not-equal-to signs, 129
Equations, 30, 31

Error messages, 159-160
EXPonent function, 138
EXPonentiation, 28

F

Files (disk), 22-24
FOR statement, 41

FRE functions, 140
Function keys, 20, 52

Functions, 138-140

G

Game controls and ports, 2
GET statement, 51-52, 134

GET#statement, 134, 176
Getting started, 16-25
GOSUB statement, 134
GOTO (GO TO) statement, 36, 135

Graphic keys, 17, 20
Graphic symbols (see graphic keys), 17, 20. 66, 143-148
Greater than, 129

H

Headering disks, 23
Hyperbolic functions, 151

IEEE-48 Interiace, 12

185

IF ... THEN statement, 135
INPUT statement, 49-50, 135
INPUT#, 135, 177

INSert key, 18
INTeger function, 54, 138

Integer variable, 38-40,152-153
110 pinouts, 152-155

J

Joysticks, 2, 13

K

Keyboard,16-21

L

LEFT$ function, 139
LENgth function, 139
Less than, 129
LET statement, 135
LIST command, 37, 130
LOAD command, 22-23,130
LOGarithm function, 151
Loops, 36,41

Lower case characters, 16

M

Mathematics, 27-29
formulas, 151
function table, 151
symbols, 27-30,129

Memory maps, 149 -150
MID$ function, 140
Multiplication, 27
Music, 11,88-102

N

Names
program, 22-23
variable, 38-41 , 128

NEW command, 23,131
NEXT statement,41,135
NOT operator, 129

Numeric variables, 38-40, 128
Numeric functions, 138-139

o

ON statement, 136
OPEN statement, 23, 136, 178-179
Operators,

arithmetic, 27-30,129
logical,129
relational,129

186

p

Parenthesis, 30
PEEK function, 65, 138
Peripherals, 6-7, 12-13, App. A

POKE statement, 65, 136
POS function, 140
PRINT statement, 26-31, 136
PRINT#, 136, 179

Printer commands, App. S
Programs

editing, 18-19, 37, 64
line numbering, 35

loading/saving (disk).21-24, 130, 131, 177, 180
loading/saving (cassette), 21-24, 130, 131

Prompt, 49-50

Q

Quotation marks, 26-27, 31

R

RaNDom function, 53-54, 139
Random numbers, 53-54
READ statement, 104, 137
REMark statement, 137
Reserved words (see Command statements), 128 -140
Restore key, 19
RESTORE statement, 137
Return key, 16
RETURN statement, 137
R IGHT$ function, 138

RUN command, 131
RUN/STOP key, 20

S

SAVE command, 17, 131, 180
Saving programs, 17
Screen memory maps, 67-68
SGN, function, 139
Shift key, 16-17
SINe function, 139
Sound effects, 100-101
SPC function, 140
SPRITE EDITOR, 122

SPRITE graphics, 73-86
SQuaRe function, 139
STOP command, 129, 137
STOP key, 20

String variables, 38-40, 128
STR$ functions, 140
Subscripted variables, 108
Subtraction, 27
Syntax error, 26, 159-160
SYS statement, 138

187

T

TAB function, 140
TAN function, 139
TI variable, 128-129
TI$ variable, 128-129

Time clock, 128-129
TV connections, 3, 4

U

Upper/Lower Case mode, 20
USR function, 139
User defined function (see DEF), 133.

V

VALue function, 140
Variables, 38-40, 128

array, 108-110

dimensions, 109
floating point, 38-40,128
integer, 38-40, 128
numeric, 38-40,128
string ($), 38-40, 128

VERIFY command, 132, 181
Voice, 88-101

W

WAIT command, 138

188

COMMODORE 64 QUICK REFERENCE CARD

SIMPlf VARIA8LES

Type Nome Range

Real XV :!: 1.70141 183E+38

±2.93873588E-39

Integer XY% ± 32767

String XV$ a to 255 characters

X is a lener (A-Z), Y is 0 lener or number (0-9), Variable names

con be more than 2 characters, but only the first two ore recog

nized.

ARRAY "'RIA8LES

Type

Single Dimension

Two-Dimension

Three-Dimension

Nome

XY(S)

XV(S,S)

XV(S,S,S)

Arrays of up to ele en elements (subscripts 0-10) con be used

where needed. Arrays with more thon eleven elements need to

be DIMensioned.

ALGEBRAIC OPERAJORS

Assigns alue to variable

- Negotion

Exponentiation

Multiplication

Division

+ Addition

- Subtraction

RElATIONAL AND LOGICAL OPERAJORS

Equal

<> Not Equal To

< less Than

> Greater Than

< = less Than or Equal To

> == Greater Than Of Equal To

NOT logical "Not"

AND logical "And"

OR Logical "Or"

Expression equals-l if 'rue, a if false.

SYSTEM COMMANDS

LOAD "NAME"

SAVE "NAME"

Loads a program from tape

Saves a program on tape

LOAD "NAME" ,8 Loads a program from disk

SAVE "NAME" ,8 Saves a program to disk

V ERIFY "NAME" Verifies that program was SAVEd

without errors

RUN Executes a program
RUN xxx Executes program starting at line

STOP Halts execution

END

CONT

PEEK(X)

POKE X,V

SYS xxxxx

WAIT X,Y,l

USR(X)

Ends execution

Continues program execution from

line where program was halted

Returns contents of memory

location X

Changes contents of location X

to value Y

Jumps to execute a mac nine language

program, starting at xxxxx

Program waits until contents of

location X, wnen EORed witn l and

ANDed with Y, is nonzero.

Panes value of X to a machine

language subroutine

EDITING AND FOIMAJTING COMMANOS

LIST

LIST A-B

REM Message

TAB(X)

lists entire program

lists from line A to line 8

Comment menage can be listed but

is ignored during program execution

Used in PRINT statements. Spaces X

positions on screen

SPC(X) PRINTs X blanks on line

POS(X) Returns currenl cursor position

CLRiHOME Positions cursor to left corner of

screen

SHIFT CLRiHOME Clears screen and places cursor in

"Home" position

SHIFT INST/DU Inserts space al current cursor

position

INST/DEl Deletes character at current cursor

position

CTRl When used with numeric color key,

selects lext color. May be used in

PRINT statement

CRSR Keys Moves cursor up, down, left, right

Commodore Key When used with SHIFT selects

between upper/lower case and

graphic display mode.

When used with numeric color key,

selects optional text color

ARRAYS AND STRINGS

DIM A(X,Y,l)

lEN (X$)

STR$(X)

VAl(X$)

CHR$(X)

ASC(X$)

lEFT$(A$,X)

RIGHT$(A$,X)

MID$(A$,X,Y)

Sets maximum subscripts for A;

reserves space for (X + 1)*(Y + 1)*(l + 1)

elements siorting at A(O,a,O)

Returns number of characters in X$

Returns numeric value of X,

converted to a string

Returns numeric value of AS, up to

first nonnumeric character

Returns ASCII character whose code

is X

Returns ASCII code for first

character of X$

Returns lehmost X characters of A$

Returns rightmost X characters

of AS

Returns Y characters of AS

starting at characte
'
, X

INPUT/OUTPUT COMMANDS

INPUT AS OR A PRINTs '?' on screen and waits for

user to enter a string or value

INPUT "ABC";A PRINTs message and waits for user

to enter value. Can also INPUT AS

GET AS or A 'Mlits for user to type one

character value; no RETURN needed

DATA A,"B",C Initializes a set of values that

can be used by READ statement

READ AS or A Assigns next DATA value to A$ or A

RESTORE Resets data pointer to start

READing the DATA list again

PRINT "A= ";A PRINTs string 'A= ' and value of A

';' suppresses spaces - ' , tabs data

to next field.

PROGRAM FLOW

GOTO X Branches to line X

IF A=3 THEN 10 IF assertion is true THEN execute

following port of statement. IF

false, execute next line number

FOR A= 1 TO 1 a Executes all statements between FOR

STEP 2 : NEXT and corresponding NEXT, with A

going from 1 to 10 by 2. Step size

is 1 unless specified

NEXT A Defines end of loop. A is optional

GOSUB 2000

RETURN

Branches 10 subroutine starting at

line 2000

Marks end of subroutine. Returns to

statement following most recent

GOSU8

ON X GOTO A,B Branches to Xth line number on

list. If X = 1 branches to A, etc.

ON X GOSUB A,B Bronches to subroutine at Xth line

number in list

ABOUT THE COMMODORE 64

USER'S GUIDE ...

Outstanding color ... sound synthesis ... graphics ...

computing capabilities ... the synergistic marriage of

state-of-the-art technologies. These features make the

Commodore 64 the most advanced personal computer

in its class.

The Commodore 64 User's Guide helps you get started

in computing, even if you've never used a computer

before. Through clear, step-by-step instructions, you

are given an insight into the BASIC language and how

the Commodore 64 can be put to a myriad of uses.

For those already familiar with microcomputers, the

advanced programming sections and appendices

explain the enhanced features of the Commodore 64

and how to get the most of these expanded

capabi I ities.

PRINTED IN HONG KONG

	0000
	img001
	img002
	img003
	img004
	img005
	img006
	img007
	img008
	img009
	img010
	img011
	img012
	img013
	img014
	img015
	img016
	img017
	img018
	img019
	img020
	img021
	img022
	img023
	img024
	img025
	img026
	img027
	img028
	img029
	img030
	img031
	img032
	img033
	img034
	img035
	img036
	img037
	img038
	img039
	img040
	img041
	img042
	img043
	img044
	img045
	img046
	img047
	img048
	img049
	img050
	img051
	img052
	img053
	img054
	img055
	img056
	img057
	img058
	img059
	img060
	img061
	img062
	img063
	img064
	img065
	img066
	img067
	img068
	img069
	img070
	img071
	img072
	img073
	img074
	img075
	img076
	img077
	img078
	img079
	img080
	img081
	img082
	img083
	img084
	img085
	img086
	img087
	img088
	img089
	img090
	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098
	img099
	img100
	img101
	img102
	img103
	img104
	img105
	img106
	img107
	img108
	img109
	img110
	img111
	img112
	img113
	img114
	img115
	img116
	img117
	img118
	img119
	img120
	img121
	img122
	img123
	img124
	img125
	img126
	img127
	img128
	img129
	img130
	img131
	img132
	img133
	img134
	img135
	img136
	img137
	img138
	img139
	img140
	img141
	img142
	img143
	img144
	img145
	img146
	img147
	img148
	img149
	img150
	img151
	img152
	img153
	img154
	img155
	img156
	img157
	img158
	img159
	img160
	img161
	img162
	img163
	img164
	img165
	img166
	img167
	img168
	img169
	img170
	img171
	img172
	img173
	img174
	img175
	img176
	img177
	img178
	img179
	img180
	img181
	img182
	img183
	img184
	img185
	img186
	img187
	img188
	img189
	img190
	img191
	img192
	img193
	img194
	img195
	img196
	img888
	img999

